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• We have been considering the case where there are  connections 
between different neurons in the output layer

Recurrent networks
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• Develop an intuition for how 
recurrent networks respond to 
their inputs

• Examine computations 
performed by recurrent 
networks 

• Use all the powerful linear algebra tools we have 
developed
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τn
dv
dt

= − 1− λ( )v + h

• We examined three cases:

λ < 1 λ = 1 λ > 1

τn
dv
dt

= − v + h

• Simplest recurrent network – a neuron with an autapse

Input , h

v λ

+ λv



Recurrent networks
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• The behavior of the network depends critically on λ

With zero input… 
relaxation back to zero

With zero input… 
persistent activity!

MEMORY!

v

h(t)

t

Integration

λ = 1

Exponential relaxation

v

h(t)

λ <1

t

Exponential growth

λ >1

v

h(t)

t

τn
dv
dt

= − 1− λ( )v + h



Learning Objectives for Lecture 20

• Recurrent networks with lambda greater than one
– Attractors

• Winner-take-all networks

• Attractor networks for long-term memory (Hopfield model)

• Energy landscape

• Hopfield network capacity

5



Learning Objectives for Lecture 20

• Recurrent networks with lambda greater than one
– Attractors

• Winner-take-all networks

• Attractor networks for long-term memory (Hopfield model)

• Energy landscape

• Hopfield network capacity

6



Recurrent networks
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• Networks with             have memory!λ ≥1

λ1 = 2

h1

v

h1

t

τn
dv
dt

= (λ1 −1)v + h(t)

τn
dv
dt

= v v(t)= 0

v

h1

t

• With zero input, zero is an ‘unstable fixed point’ of the network



Recurrent networks
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• Add a saturating activation function F(x)

v

h

t

v = F(I )

I−1

1

λ1 = 2

h1

v

h

t

1
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• Saturating activation function plus eigenvalues greater 
than 1 lead to stable states other than zero!  

2

h

v = F(I )

I−1
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energy landscape
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Recurrent networks
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• Two-neuron network that has two attractors

2

h1

v = F(I )

I
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h1 h2
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Winner-take-all network
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• Implements decision making

v1
−1 1

v2

−2
−2

h1 h2

1

2

Network state will move to attractor 1 if h1 > h2

Network state  will move to attractor 2 if h2 > h1

 

h

 

h
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• Implements decision making

v1
−1 1

v2

1
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Hippocampus
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• The region CA3 of the hippocampus gets sensory inputs and 
forms a dense recurrently connected network

Figure	removed	due	to	copyright	restrictions.	Figure	5	in	Mazzantini,	M.	“Functional	Neural	Differentiation	
of	Adult	Hippocampus	Derived	Stem	Cells.”	Thesis	submission,	University	College	London,	2010.

See	Lecture	20	video	to	view	figures.



Hippocampus
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• Some neurons in CA3 represent ‘memories’ of locations in 
space (place cells). 

Figures	removed	due	to	copyright	restrictions.	Sources	unknown.

See	Lecture	20	video	to	view	figures.



Hippocampus
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• Different neurons represent different remembered locations. 

Figure	removed	due	to	copyright	restrictions.	Sources	unknown.

See	Lecture	20	video	to	view	figures.
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• Networks with many attractors…
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• Networks with many attractors…

2

h3

2

h1
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h2v3

v2

v1

2n possible states !
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• We only want some of the possible states to be stable

mem 1

mem 2

mem 3

v1
−1 1

v2

−1

1

2

h1

2

h2
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• Networks with many attractors…
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τn
d!v
dt

= −
!v + F

!
h +M !v⎡⎣ ⎤⎦

• We started with this dynamical equation

 
!v(t +1) = F M !v(t)⎡⎣ ⎤⎦

• We are going to simplify this as follows:

where the neuronal activation function is

I

F(I )

binary threshold neuron

F(x) = sgn(x) =
1 if x > 0
−1 if x ≤ 0

⎧
⎨
⎪

⎩⎪

vi (t +1) = F Mijvj (t)
j=1

N

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥



Where									is	the	activity	(1	or	-1)	of	the	ith neuron.

Hopfield networks
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• Our goal is to make a network that evolves so that it 

approaches any desired pattern
 
!
ξ

ξ i

vi (t +1) = sgn Mijξ j
j=1

N

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= ξ i

• The condition for      to be a stable pattern is  
!
ξ



Hopfield networks

24

• Let’s try the weight matrix Mij =αξ i ξ j

vi (t +1) = ξ i

= sgn αξ i ξ j( )ξ j
j=1

N

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= sgn αξ i ξ jξ j
j=1

N

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= sgn α Nξ i⎡⎣ ⎤⎦

vi (t +1) = sgn Mijξ j
j=1

N

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Mij =
1
N
ξ i ξ j !

 
M =

1
N
!
ξ
!
ξ T

whereα>0

NOTE: This is a symmetric 
matrix!
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• Let’s take an example: Design a network of 3 neurons that 

remembers a pattern (1,1,-1).

 

!
ξ =

1
1
−1

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

 
Mij =

1
N
!
ξ
!
ξ T =

1
3

1
1
−1

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
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1 1 −1( )
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1
3
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⎠

⎟
⎟
⎟⎟

v(t +1)= sgn 1
3
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⎥
⎥
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3
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⎥
⎥
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⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

• Is the pattern (1,1,-1) a stable state?

Yes!
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• Does our network have an ‘attractor’ at the pattern (1,1,-1)?

– Let’s start the network at a different state and see what happens…

 

!v0 =
1
1
1
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⎜
⎜
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⎟
⎟

v(t +1)= sgn 1
3
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⎥
⎥
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⎥
⎥
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⎟⎟

• The network evolves toward the ‘attractor’ state (1,1,-1) !



• Let’s prove that        is an attractor of the network

Hopfield networks
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ki = Mijvj
j=1

N

∑ vjwhere       is the firing rate of the jth neuron

The total input has the correct sign if the majority of the 
neurons have the correct state!

 
Mij =

1
N
!
ξ
!
ξ T

ki =
1

N
ξ i ξ j

⎛

⎝
⎜

⎞

⎠
⎟vj

j=1

N

∑ =
1

N
ξ i ξ jvj

j=1

N

∑

ki =
1

N
ξ i Ncorrect −Nincorrect( )

  
vi(t +1) = sgn ki⎡⎣ ⎤⎦ = ξi

ξ jvj
j=correct
∑ + ξ jvj

j=incorrect
∑

 
!
ξ

Calculate total input onto the ith neuron starting in arbitrary state 
!v

 
!
k = M !v
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The Energy Function
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• Each possible state of the network has an energy given by:

 
H = −

1
2
!v ⋅
!
k

This is just the overlap of the current state of the network with the 
pattern of inputs to all the neurons!

 
H = −

1
2
!vTM !v

The energy is lowest when current state has high overlap with the 
synaptic drive to the next state --->  in an attractor

ki = Mijvj
j=1

N

∑  
!
k = M !v



The Energy Function
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• Each possible state of the network has an energy given by:

 
H = −

1
2
!vTM !v M =

0 −2
−2 0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

h1 h2

−2

−2

v1
−1 1

v2

H=-1

H=-1

H=0

H=0

l 
0 

0 
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• Each possible state of the network has an energy given by:

 
H = −

1
2
!vTM !v

v1
−1 1

v2

M =
0 −2
−2 0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

h1 h2

−2

−2
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• A Hopfield network can ‘reconstruct’ a memory or pattern from a 
partial pattern

• It will evolve ‘downhill’ toward whichever memory is closest to the 
input pattern (content addressable memory)

mem 1

mem 2

mem 3
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• ‘Content addressable memory’

Hopfield networks can be used to store a 
memory of an image

Video:	splitfoot99.	“Image	Recognition	with	Hopfield	Net.”	
May	10,	2009.	YouTube.	

https://www.youtube.com/watch?v=fCvQcNzUZf0
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Multiple memories
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• We want our network to remember P different patterns  
!
ξ µ

µ = 0,1,2...,P −1

Mij
µ =

1
N
ξ i
µξ j

µ

• We compute the contribution to the weight matrix from each 

pattern…

and add them up! Mij =
1
N

ξ i
µξ j

µ

µ=0

P−1

∑

• The network state will evolve to the attractor that is ‘closest’ to the 
initial state (that with the biggest overlap).



Multiple memories

Video:	macheads202.	“Hopfield	Networks.”	Feb.	28,	2016.	
YouTube.

Video:	Aaron	Vose.	“An	Interactive	Hopfield	Neural	Network	
Restoring	Corrupted	Bitmaps.”	Mar.	18,	2013.	YouTube.
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https://www.youtube.com/watch?reload=9&v=HOxSKBxUVpg
https://www.youtube.com/watch?v=ozyNz5-2Ek0
https://www.youtube.com/watch?v=ozyNz5-2Ek0


What is the capacity?
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!
ξ 0

• Do the same stability analysis we did before...

For a pattern        to be an attractor, we want

vi (t +1) = sgn Mijξ j
0

j
∑
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ =

• Let’s plug in our weight matrix and see what we get…

vi (t +1) = sgn
1
N

ξ i
µξ j

µ

µ

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
ξ j
0

j
∑
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟ = ??

Mij =
1
N

ξ i
µξ j

µ

µ

∑ξ i
0
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vi (t +1) = sgn
1
N

ξ i
µξ j

µ

µ

∑
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
ξ j
0

j
∑
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟ = ??

• Rearrange…

= sgn 1
N

ξ i
µ

µ

∑ ξ j
µξ j

0

j
∑

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

• Separate terms where               and      µ = 0 µ ≠ 0

= sgn 1
N
ξ i
0 ξ j

0ξ j
0

j
∑ +

1
N

ξ i
µ ξ j

µξ j
0

j
∑

µ≠0
∑

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

N
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sgn Mijξ j
0

j
∑
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ = ξ i

0 ???

= sgn ξ i
0 +

1
N

ξ i
µ ξ j

µξ j
0

j
∑

µ≠0
∑

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

 
!
ξ µ ⋅
!
ξ 0

Cross-talk between our pattern         and all the other memories 

depends on how much overlap there is !
 
!
ξ 0



What is the capacity?
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• You can see that if all the memories are orthogonal, then all are stable 

attractors.

 
vi (t +1)= sgn ξ i

0 +
1
N

ξ i
µ
!
ξ µ ⋅
!
ξ 0( )

µ≠0
∑

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

• But if one of the memories (e.g.      ) is close to       then  
!
ξ 1  

!
ξ 0

 
!
ξ 0 ⋅
!
ξ 1 ≈ N

vi (t +1)= sgn ξ i
0 + ξ i

1( ) ≠ ξ i0
• And…

---



What is the capacity?
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• Memories don’t need to be orthogonal, as long as the cross-talk term 
is not large enough to change the sign of the inputs, the memories 
will not have any errors.

• For random values of     , a Hopfield network can store up to 0.15N 
memories and still have a very small probability (p<0.01) of having an 
error in one neuron.

ξ i



What is the capacity?
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• Multiple memories

• Too many memories…

spurious attractors

desired attractors

multiple attractors



What is the capacity?
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• Too many memories…

spurious attractors

desired attractors
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