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Recurrent networks

« We have been considering the case where there are connections
between different neurons in the output layer

+ Develop an intuition for how 1 2 3 h
recurrent networks respond to
their inputs

* Examine computations 9" |4
performed by recurrent
networks M

aa'

« Use all the powerful linear algebra tools we have

developed



Recurrent networks

* Simplest recurrent network — a neuron with an autapse

dv Input , h

T—=—-v +h + Av
dr l

dv

T —=—(1-A)v+h
a %/1

We examined three cases:

A<1 A=1 A>1



dv

Recurrent networks Ty = U= Ay
—
* The behavior of the network depends critically on 2
A<l A=1 A>1
Exponential relaxation Integration Exponential growth

v

h(t)\

{ t t

With zero input... With zero input... MEMORY!
relaxation back to zero persistent activity!



Learning Objectives for Lecture 20

Recurrent networks with lambda greater than one
— Attractors

Winner-take-all networks
Attractor networks for long-term memory (Hopfield model)
Energy landscape

Hopfield network capacity



Learning Objectives for Lecture 20

* Recurrent networks with lambda greater than one
— Attractors



Recurrent networks
I

* Networks with )} >1 have memory!

e D+ k) %A,:2

dr

Tnﬂ =V V(t)=0
dt

With zero input, zero is an ‘unstable fixed point’ of the network




Recurrent networks

Add a saturating activation function F(x) }f
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Recurrent networks

v=F()
« Saturating activation function plus eigenvalues greater
than 1 lead to stable states other than zero! < 1£ S
_/i I
1
A | | | |
it f i f h
SN N7 AN V! G W
I L / L %2
v | | |
h M i N |
< 0 O > 1
E
— energy landscape
@
N
<€ - > >

attractor 1



Recurrent networks

e Two-neuron network that has two attractors
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Learning Objectives for Lecture 20

 Winner-take-all networks



Winner-take-all network

* Implements decision making

Network state will move to attractor 1 if h > h,

Network state will move to attractor 2 ifh, > h

12



Winner-take-all network

Implements decision making

< 0 .
-2
2 0
v, h

13



Learning Objectives for Lecture 20

« Attractor networks for long-term memory (Hopfield model)



Hippocampus

« The region CA3 of the hippocampus gets sensory inputs and
forms a dense recurrently connected network

Figure removed due to copyright restrictions. Figure 5 in Mazzantini, M. “Functional Neural Differentiation
of Adult Hippocampus Derived Stem Cells.” Thesis submission, University College London, 2010.

See Lecture 20 video to view figures.



Hippocampus

« Some neurons in CA3 represent ‘memories’ of locations in
space (place cells).

Figures removed due to copyright restrictions. Sources unknown.

See Lecture 20 video to view figures.



Hippocampus

Different neurons represent different remembered locations.

Figure removed due to copyright restrictions. Sources unknown.

See Lecture 20 video to view figures.



Recurrent networks

* Networks with many attractors...
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Hopfield networks

* Networks with many attractors...

2" possible states !



Hopfield networks

« We only want some of the possible states to be stable
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Hopftield networks

* Networks with many attractors...
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Hopfield networks

*  We started with this dynamical equation

rnd—r/ = —\7+F[E+M\7]
dt

« We are going to simplify this as follows:

iMl.jvj (I)}

(t+1) = F[Mv(@)] W+ = F

where the neuronal activation function is

F(l )
%)_ lif x>0
. F(x) = sgn(x) = 1 1if x=0

—

binary threshold neuron




Hopftield networks

« Our goal is to make a network that evolves so that it

approaches any desired pattern g

Where gi is the activity (1 or -1) of the ith neuron.

* The condition forg to be a stable pattern is

- _
v(t+1) = sgn EMUEJ. = &,
j-1 _




Hopftield networks

« Let's try the weight matrix M, = a&. Sj where a>0

v(t+1) = sgn

= sgn

= sgn

= sgn|

v(t+1) =&,

[ N ] - |
EM §] NOTE: This is a symmetric

j=1

=1

k‘

i(a&é)

matrix!

a&iiéjsj { i
j=1 M; = —S; 59‘1} |
] N
Si] 1 — T
M=—E§



* Let's take an example: Design a network of 3 neurons that

remembers a pattern (1,1,-1). E<| 1

(11 -1}

v(t+1)=sgn

W | —

Hopftield networks

-1
-1

=sgn

W | —

1
3

Yes!



Hopftield networks

« Does our network have an ‘attractor’ at the pattern (1,1,-1)?

— Let's start the network at a different state and see what happens...

1

=l 1

1
1 1 -1 1 3 1
v(t+1)=sgn% 1 1 -1 1 =sgn% 3 = 1
-1 -1 1 1 -3 -1

 The network evolves toward the ‘attractor’ state (1,1,-1) !



Hopfield networks

¢ Let's prove that g is an attractor of the network A1 = ié’é’T
ly N

Calculate total input onto the it neuron starting in arbitrary statey;

k = EM V. where v, is the firing rate of the jt neuron &k =MV

k =E(%§i51)"j =%§i2§jvj 2 SVt z S5V)

J=1 j=correct j=incorrect
\ J
Y \_/
|
k =—E& (N - N.
i N 51 ( correct lncorrect) Vl(t 4+ 1) — Sgn[kl] — él_

The total input has the correct sign if the majority of the
neurons have the correct state! 27



Learning Objectives for Lecture 20

« Energy landscape



The Energy Function

k =MV

=~
Il
0=
=
<

J=1

« Each possible state of the network has an energy given by:

1 - 1 —T -
H=—-——7vk H=-— Vv Mv
2 2
This is just the overlap of the current state of the network with the
pattern of inputs to all the neurons!

The energy is lowest when current state has high overlap with the
synaptic drive to the next state ---> in an attractor
29



The Energy Function

« Each possible state of the network has an energy given by:

H=-L3my m-| 0 ?
2 -2 0
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The Energy Function

« Each possible state of the network has an energy given by:

H=-L3my M=( 0 ‘2)

=

31



Hopfield networks

« A Hopfield network can ‘reconstruct’ a memory or pattern from a
partial pattern

It will evolve ‘"downhill” toward whichever memory is closest to the
input pattern (content addressable memory)

32



Hopfield networks can be used to store a
memory of an 1image

« 'Content addressable memory’

Video: splitfoot99. “Image Recognition with Hopfield Net.”
May 10, 2009. YouTube.



https://www.youtube.com/watch?v=fCvQcNzUZf0

Learning Objectives for Lecture 20

« Hopfield network capacity



Multiple memories

We want our network to remember P different patterns £"

u=0,1,2...P-1

We compute the contribution to the weight matrix from each

pattern... 1
MijM - N&ﬂ%f
=
and add them up! M, = —Ec_“.fl“fj;‘
N =

The network state will evolve to the attractor that is ‘closest’ to the
initial state (that with the biggest overlap).



Multiple memories

Video: macheads202. “Hopfield Networks.” Feb. 28, 2016.
YouTube.

Video: Aaron Vose. “An Interactive Hopfield Neural Network
Restoring Corrupted Bitmaps.” Mar. 18, 2013. YouTube.

36


https://www.youtube.com/watch?reload=9&v=HOxSKBxUVpg
https://www.youtube.com/watch?v=ozyNz5-2Ek0
https://www.youtube.com/watch?v=ozyNz5-2Ek0

What 1s the capacity?

* Do the same stability analysis we did before...

For a pattern £0 to be an attractor, we want
_ 1 Heu
Vi(t+1) = Sgn(EMijgjo) — §i0 Mij = N;E; gj
j

* Let’s plug in our weight matrix and see what we get...

v(t+]) = sgn(z

J

1 weu =0 _
ﬁga 3 }sj ) =7



What 1s the capacity?

vi(t+1) = sgn(z{%zgiugju]‘g) =77

J

* Rearrange...

1 u uge0
w3 e

« Separate termswhere u=0 and wu=0

| 00 1 u e 0
= sgn(ﬁéi\Z%%jfﬁEgi 25 )
Y

u=0 J

N



What 1s the capacity?
Sgn(z )_ g0 979

- Sgn( E0 4 —23“25“5 )

u=0

Cross-talk between our pattern go and all the other memories

depends on how much overlap there is !

39



What 1s the capacity?

W+ = sgn| & + %25(55)

You can see that if all the memories are orthogonal, then all are stable

attractors.

—

« But if one of the memories (e.qg. E')is close to 50 then

—

§-E' =N

« And...
v(t+1) = sgn(&l.0 + §l.1) = £’



What 1s the capacity?

Memories don't need to be orthogonal, as long as the cross-talk term
is not large enough to change the sign of the inputs, the memories
will not have any errors.

For random values of &;, a Hopfield network can store up to 0.15N
memories and still have a very small probability (p<0.01) of having an
error in one neuron.



What 1s the capacity?

* Multiple memories

AN multiple attractors/

* Too many memories...

spurious attractors

desired attractors

42



What 1s the capacity?

* Too many memories...

spurious attractors

desired attractors

43



Learning Objectives for Lecture 20

Recurrent networks with lambda greater than one
— Attractors

Winner-take-all networks
Attractor networks for long-term memory (Hopfield model)
Energy landscape

Hopfield network capacity
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