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Learning objectives for Lecture 7

• Be able to add a synapse in an equivalent circuit model

• To describe a simple model of synaptic transmission

• To be able to describe synaptic transmission as a convolution 
of a linear kernel with a spike train

• To understand synaptic saturation

• To understand the different functions of somatic and dendritic 
inhibition
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• Structure of typical excitatory synapse

pre-synaptic terminal

dendrite

post-synaptic terminal
(spine)

~20 nm
500 nm

0.5μm

synaptic vesicle
(30-40nm dia)

4

Chemical synapse



• Sequence of events in synaptic transmission

dendrite

+50mV

-60 mV

Ca++Ca++

voltage-gated 
Ca- channels

AP
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Chemical synapse



Chemical synapse

dendrite

Ca++Ca++

Na+ Ca++

ligand-gated ion 
channels

‘ligand’ = 
‘neurotransmitter’

• Sequence of events in synaptic transmission

Isyn

Gsyn
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 Vm

Last step:
Neurotransmitter 

reuptake



Anatomy of synapses/axons/dendrites

• Synapses are small – contact area~0.5μm

• High packing density ~109 synapses/mm3

– 1.1um on a 3D lattice
– 4.1km of axon (0.3μm dia)
– 500m of dendrite

• A cell receives many synapses
– 10000 synapses 
– on 4mm of dendrites (4 cm of axon)
– 105 neurons/mm3 in mouse cortex
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Learning objectives for Lecture 7

• Be able to add a synapse to an equivalent circuit model

• To describe a simple model of synaptic transmission

• To be able to describe synaptic transmission as a convolution 
of a linear kernel with a spike train

• To understand synaptic saturation

• To understand the different functions of somatic and dendritic 
inhibition
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Two electrode voltage-clamp 
experiment

Magleby and Stevens, 1972

-
+ Vc

 Vm Ie

Frog sartorius muscle fiber

Motor 
neuron 
synapse
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How does a synapse respond?
• Ionotropic receptors



How does a synapse respond?
• Ionotropic receptors

Isyn (t) = Gsyn (t) V − Esyn⎡⎣ ⎤⎦

Gsyn (t)

1 ms

time

V

Imax

50 mV-100

I-V Curve
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Annotated	figure	on	lower	right	©	Hille,	Bertil.	Ion	Channels	of	Excitable	Membranes (3rd	Ed.).	
2001,	Sinauer /	Oxford	University	Press.	All	rights	reserved.	This	content	is	excluded	from	our	
Creative	Commons	license.	For	more	information,	see	https://ocw.mit.edu/help/faq-fair-use/.



Equivalent circuit model of a synapse

• Current flow through a synapse results from changes in
synaptic conductance

EL Ie

V
C

+

GL

Isyn (t) = Gsyn (t) V − Esyn⎡⎣ ⎤⎦

Esyn

Gsyn

Equivalent circuit of 
a synapse
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Excitatory synapses

• Increased synaptic conductance causes the membrane potential to
approach the reversal potential for that synapse.

Gsyn

EL Ie

V
C

+

GL

Isyn (t) = Gsyn (t) V − Esyn⎡⎣ ⎤⎦

Esyn = 0mV

Excitatory 
postsynaptic 

potential (EPSP)
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Now we can change the 
‘holding potential of the cell 
by injecting a little current 
(current clamp experiment)

 Vm

  15mV



Excitatory and inhibitory synapses

• Increased synaptic conductance causes the membrane potential to 
approach the reversal potential for that synapse.

Gsyn

EL Ie

V
C

+

GL

Isyn (t) = Gsyn (t) V − Esyn⎡⎣ ⎤⎦

Excitatory synapse if
Esyn >Vth

Esyn = 0mV

Excitatory 
postsynaptic 

potential (EPSP)
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  15mV

Figure	from	Johnston,	D.	and	M.-S.	Wu.	Foundations	of	Cellular	
Neurophysiology.	1995.	Courtesy	of	MIT	Press.



• Increased synaptic conductance causes the membrane potential to
approach the reversal potential for that synapse.

Gsyn

EL Ie

V
C

+

GL

Isyn (t) = Gsyn (t) V − Esyn⎡⎣ ⎤⎦

Inhibitory synapse if
Esyn <Vth

Esyn = − 75mV

GABAergic synapse

14

Excitatory and inhibitory synapses

Inhibitory
postsynaptic 

potential (IPSP)

Figure 13.4	from	Johnston,	D.	and	M.-S.	Wu.	Foundations	of	
Cellular	Neurophysiology.	1995.	Courtesy	of	MIT	Press.



Equivalent circuit model of a synapse

• Current flow through a synapse results from changes in 
synaptic conductance

Isyn (t) = Gsyn (t) Vm (t)− Esyn⎡⎣ ⎤⎦

• Ligand gated ion channels ‘flicker’ between 
open and closed states.

Gsyn (t) = ĝR NR PR(t)

ĝR =unitary ‘open’ conductance

NR =number of receptors

• We can write the synaptic conductance in 
terms of the probability            that a 
receptor is ‘open’.

PR(t)
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Figure	removed	due	to	copyright	restrictions.	Single-
channel	patch	recording,	GABAA receptor.	Figure	6.13	
in:	Hille,	Bertil.	Ion	Channels	of	Excitable	Membranes
(3rd	Ed.).	2001,	Sinauer /	Oxford	University	Press.

Single-channel patch recording
GABAA receptor



Kinetic model of synapse gating

• We can describe the open probability using a ‘kinetic’ model.

 
'closed' α

β
   'open'

1− PR PR

Probability per unit time; 
units are 1/s

α ,β  are transition rate constants

Single-channel patch recording
GABAA receptor

• What controls the rate at which channels 
open ? 

Neurotransmitter!
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Figure	removed	due	to	copyright	restrictions.	Single-
channel	patch	recording,	GABAA receptor.	Figure	6.13	
in:	Hille,	Bertil.	Ion	Channels	of	Excitable	Membranes
(3rd	Ed.).	2001,	Sinauer /	Oxford	University	Press.



Equivalent circuit model of a synapse
• Simplified version of Magleby-Stevens model

d PR
dt

= α [A]n (1− PR ) − β PRA
α

β
(closed)

unbound receptor
(open)

bound receptor complex

unbound 
NT

 R
   AR*

1− PR PR

PR(t) = Pmax e
− t /τ s

PR(t)

[A]
T 17

Gsyn (t) = ĝR NR PR(t)



Learning objectives for Lecture 7

• Be able to add a synapse in an equivalent circuit model

• To describe a simple model of synaptic transmission

• To be able to describe synaptic transmission as a convolution 
of a linear kernel with a spike train

• To understand synaptic saturation

• To understand the different functions of somatic and dendritic 
inhibition
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Response of a synapse to a spike train input
• This simple model makes it very easy to describe the 

response of a synapse to a train of spikes!
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K(t) = Gmax e
− t /τ s

Impulse response or  Linear Kernel

S(t)Input

G(t)Response

G(t) = K(τ )S(t −τ )
−∞

∞

∫ dτ

Convolution



t

t

Response of a synapse to a spike train input
• This simple model makes it very easy to describe the 

response of a synapse to a train of spikes!

• We just convolve the spike train with the linear 
response of the synaptic conductance

G(t) = K(τ )S(t −τ )
−∞

∞

∫ dτ
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t

K(t) = Gmax e
− t /τ s

Impulse response

τ

S(t)

G(t)

K(t)



Response of a synapse to a spike train input
• We just convolve the spike train with the linear response of 

the synaptic conductance
G(t) = K(τ )S(t −τ )

−∞

∞

∫ dτ

21

• Easy to do in MATLAB®

– use the conv function



Learning objectives for Lecture 7

• Be able to add a synapse in an equivalent circuit model

• To describe a simple model of synaptic transmission

• To be able to describe synaptic transmission as a convolution 
of a linear kernel with a spike train

• To understand synaptic saturation

• To understand the different functions of somatic and dendritic 
inhibition
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Synaptic saturation
• Let’s examine how the voltage in a dendrite changes as 

a function of the amount of excitatory conductance…

 GL

  VD (t)

dendritic 
compartmentdendritic 

compartment

 EL

somatic 
compartment

somatic 
compartment

  VS (t)

 GL

 Rc

 EL

 
Gsyn

 
Esyn
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Synaptic saturation

 GL

  VD (t)

dendritic 
compartmentdendritic 

compartment

 EL

somatic 
compartment

somatic 
compartment

  VS (t)

 GL

 Rc

 EL

 
Gsyn

 
Esyn

• Let’s examine how the voltage in a dendrite changes as 
a function of the amount of excitatory conductance…
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Vm

Gsyn (nS)
EL 10 20 30 400

Synaptic saturation

 GL

 VD

dendritic 
compartment

 EL

 
Gsyn

 
Esyn

Esyn
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As synaptic input increases, the postsynaptic response saturates to a constant 
value

• Let’s examine how the voltage in a dendrite changes as 
a function of the amount of excitatory conductance…



Synaptic saturation
• Let’s examine how the voltage in a dendrite changes as 

a function of the amount of excitatory conductance…

 GL

 VD

dendritic 
compartment

 EL

 
Gsyn

 
Esyn

Kirchoff’s current law says:

  
Isyn + IL = 0

 
Isyn  IL

Gsyn V − Esyn⎡⎣ ⎤⎦ + GL V − EL[ ] = 0

GsynV −GsynEsyn + GLV −GLEL = 0

V (Gsyn +GL )− (GsynEsyn +GLEL ) = 0 V =
GLEL +GsynEsyn
GL +Gsyn
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Vm

Gsyn (nS)
EL 10 20 30 400

GL

Synaptic saturation

 GL

 VD

dendritic 
compartment

 EL

 
Gsyn

 
EsynV ≈ EL V → Esyn

Esyn

For GL >> Gsyn For Gsyn >> GL

+
Esyn

GL

⎛
⎝⎜

⎞
⎠⎟
Gsyn
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V =
GLEL +GsynEsyn
GL +Gsyn

• Let’s examine how the voltage in a dendrite changes as 
a function of the amount of excitatory conductance…



Learning objectives for Lecture 7

• Be able to add a synapse in an equivalent circuit model

• To describe a simple model of synaptic transmission

• To be able to describe synaptic transmission as a convolution 
of a linear kernel with a spike train

• To understand synaptic saturation

• To understand the different functions of somatic and dendritic 
inhibition
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Inhibitory inputs

 GL

  VD (t)

dendritic 
compartment

dendritic 
compartment

 EL

somatic 
compartment

somatic 
compartment

  VS (t)

 GL

 Rc

 EL

 Gexc

 Eexc

• The effect of inhibitory input depends strongly on where 
the inhibitory synapse is.
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Excitatory synapse

 Ginh

 Einh

Inhibitory synapse



Inhibitory inputs

 GL

  VD (t)

dendritic 
compartment

dendritic 
compartment

 EL

somatic 
compartment

somatic 
compartment

  VS (t)

 GL

 Rc

 EL

 Gexc

 Eexc

• The effect of inhibitory input depends strongly on where 
the inhibitory synapse is
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Excitatory synapse

 Ginh

 Einh

Inhibitory synapse



Crayfish as a model system
• Stereotypic behavior
• Identifiable neurons
• Identifiable circuits

Yellow: LG neuron 
(Antonsen & Edwards, 2003)

Edwards et al. (Trends  Neurosci, 1999)

Figure removed due to copyright restrictions. 
See Fig. 1 in Antonsen, B.L. and D.H. Edwards. 
“Differential Dye Coupling Reveals Lateral Giant 
Escape Circuit in Crayfish.” J. Comp. Neurol. 466 
no. 1 (2003):1-13.

Courtesy	of	Elsevier,	Inc.,	https://www.sciencedirect.com.	Used	with	permission.

31



Escape behavior in crayfish

Figure: Edwards et al. (Trends Neurosci, 1999)

¡ MG (medial giant) escape
¡ LG (lateral giant) escape
¡ Non-giant escape

LG	escape

MG	escape
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Courtesy	of	Elsevier,	Inc.,	https://www.sciencedirect.com.	Used	with	permission.



LG is a ‘command neuron’
• LG neuron is sufficient for LG escape.

– Electrical stimulation of LG neuron produces tail flip.

• LG neuron is necessary for LG escape.
– Tail flip is not elicited if the LG neuron is hyperpolarized.

Wine & Mistick (1977) 33

Figure removed due to copyright restrictions. See Fig. 1 in Wine, J.J. and D.C. 
Mistick. “Temporal Organization of Crayfish Escape Behavior: Delayed Recruitment 
of Peripheral Inhibition.” J. Neurophysiology 40 no. 4 (1977):905-925.



Escape behaviors are strongly modulated by 
inhibition

• Escape response is suppressed while another escape 
response is in progress
– Recurrent inhibition of LG neurons (and many other neurons) 

during escape behavior

• Escape response is suppressed when the animal 
is restrained

Krasne & Wine (1975)

Hold	off	escape	until	timely	
moment?
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Figure removed due to copyright restrictions. See Fig. 2 
in Krasne, F.B. and J.J. Wine. “Extrinsic Modulation of 
Crayfish Escape Behaviour.” J. Experimental Biology 63 
(1975): 433-450.



Escape behaviors are strongly modulated by 
inhibition

• Escape response is suppressed 
while the animal is eating

• But not while the animal is 
searching for food

Krasne & Lee (1988) 35

Figure removed due to copyright restrictions. 
See Fig. 2 in Krasne, F.B. and S.C. Lee. 
“Response-dedicated Trigger Neurons as 
Control Points for Behavioral Actions.” J. 
Neuroscience 8 no. 10 (1988): 3703-3712.



Two types of modulation of LG escape 
reflex

• Absolute inhibition: The escape is inhibited 
no matter how strong the excitation is. 

• Relative inhibition: The likelihood of escape is 
reduced, but it is still possible to override this 
kind of inhibition.
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Location of inhibitory synapses
• Proximal inhibition: 

– Near the spike initiating zone
– Arises from motor circuits that generate the MG escape
– Called ‘recurrent inhibition’

• Distal inhibition: 
– Intermixed with excitatory afferents further out on the dendrite
– Arises from sensory areas
– Called ‘tonic inhibition’

Previous	hypothesis:
Distal	inhibition	allows	
selective	inhibition	for	
particular	dendritic	
branches
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Measuring the effect of different types 
of inhibition

Sensory root stimulation

Spike-initiating zone
MG stimulation

restraint, sucrose block

Current injection

Recording

Vu and Krasne, 1992 38

Annotated	figure	©	American	Association for the Advancement of Science.	All	rights	reserved.	This	content	is	excluded	from	our	Creative	Commons	
license.	For	more	information,	see	https://ocw.mit.edu/help/faq-fair-use/.



Equivalent circuit model

• RL: longitudinal resistance
• RP: proximal resistance
• RD: distal resistance
• Ee: reversal potential for excitatory synapse (100 mV)
• Ge: excitatory conductance
• Gi: inhibitory conductance

39



Proximal	
inhibition

Distal	
inhibition

Proximal versus Distal inhibition

40
Annotated	figure	©	American	Association for the Advancement of Science.	All	rights	reserved.	This	content	is	
excluded	from	our	Creative	Commons	license.	For	more	information,	see	https://ocw.mit.edu/help/faq-fair-use/.



Excitatory strength

Proximal inhibition
0

0.2

1

0.5

2

5

Gi / GD
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Annotated	figure	©	American	
Association for the Advancement of
Science.	All	rights	reserved.	This	content	
is	excluded	from	our	Creative	Commons	
license.	For	more	information,	see	
https://ocw.mit.edu/help/faq-fair-use/.



Excitatory strength

Distal inhibition

0 0.2 10.5 2 5
Gi / GD
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Annotated	figure	©	American	
Association for the Advancement of
Science.	All	rights	reserved.	This	content	
is	excluded	from	our	Creative	Commons	
license.	For	more	information,	see	
https://ocw.mit.edu/help/faq-fair-use/.



Vu et al. (JNS, 1993)

proximal inhibitory synapses

excitatory synapses,
distal inhibitory synapses

More ‘realistic’ multi-compartment 
model
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Annotated	figure	©	Society	for Neuroscience.	All	rights	reserved.	This	content	is	excluded	from	our	Creative	
Commons	license.	For	more	information,	see	https://ocw.mit.edu/help/faq-fair-use/.



• Two-compartment model shows that the effect of proximal
and distal inhibition are different.
– Proximal inhibition: absolute
– Distal inhibition: relative

• Qualitatively similar effects were seen when more
complicated models were used.

Different functions for proximal and 
distal inhibition
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Learning objectives for Lecture 7

• Be able to add a synapse in an equivalent circuit model

• To describe a simple model of synaptic transmission

• To be able to describe synaptic transmission as a convolution
of a linear kernel with a spike train

• To understand synaptic saturation

• To understand the different functions of somatic and dendritic
inhibition
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