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Learning: Brains and Machines
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Learning is the gateway to
understanding the brain and to
making intelligent machines.

Problem of learning:

a focus for
o modern math
o computer algorithms
o Nheuroscience



Learning: much more than memory

= Role of learning (theory and applications
in many different domains) has grown substantially in CS

= Plasticity and learning have a central stage in the
heurosciences

= Until now math and engineering of learning has developed
independently of neuroscience...but it may begin to change: we
will see the example of learning+computer vision...



Learning:.
math, engineering, neuroscience

Theorems on foundations of learning:

Learning theory
+ algorithms Predictive algorithms

\

* Bioinformatics

ENGINEERING * Computer vision
APPLICATIONS

- Computer graphics, speech
synthesis, creating a virtual actor

How visual cortex works - and how it
may suggest better computer vision
systems




Class

Rules of the game: problem sets (2)
final project (min = review; max = |. paper)
grading
participation!
mathcamps? Monday late afternoon?

Web site: http://www.mit.edu/~9.520/
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9.520 Statistical Learning Theory and Applications

Class 24: Project presentations
2:30—2:45 "Adaboosting SVMs to recover motor behavior from motor
data", Neville Sanjana
2:45-3:00 "Review of Hierarchical Learning", Yann LeTallec

3:00—3:15 "An analytic comparison between SVMs and Bayes Point
Machines", Ashis Kapoor

3:15-3:30 "Semi-supervised learning for tree-structured data", Charles
Kemp

3:30—3:45 "Unsupervised Clustering with Reqgularized Least Square
classifiers" - Ben Recht

3:40—3:50 "Multi-modal Human Identification." Brian Kim

3:50—4:00 "Regret Bounds, Sequential Decision-Making and Online
Learning", Sanmay Das

9.520, spring 2003



9.520 Statistical Learning Theory and Applications

Class 25: Project presentations

2:35-2:50 "Learning card playing strategies with SVMs", David
Craft and Timothy Chan

2:50-3:00 "Artificial Markets: Learning to trade using Support
Vector Machines", Adlar Kim

3:00-3:10 "Feature selection: literature review and new
development”, Wei Wu

3:10—3:25 "Man vs machines: A computational study on face
detection"” Thomas Serre

9.520, spring 2003



4. (suggested by steve smale) Approximate indicator func-
tions with kernels from a RKHS with very little smooth-
ness. Calculate approx and sample error using bounds
such as Cucker Smale etc.. Verify with computer sim-
ulations.

5. (also suggested by steve smale) Do careful proof —
mimicking theorem 4 in CS p. 37 — that the RKHS
defined for unbounded domains through the Mercer-
like Fourier representation (Girosi) is the same as the
RKHS define through the r.k. without Fourier.

6. (suggested by M. Bertero) Use Lo compactness of

monotonic functions for regularizing density estimation
5



Overview of overview

o The problem of supervised learning: "real” math
behind it

o Examples of engineering applications (from our
group)

o Learning and the brain (example of object
recognition)
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Learning from examples: goal is not to memorize
but to generalize, eg predict.

. - —

Given a set of /examples (data) {( X

Y1) (X0 Yo )i (X0 YD) }

Question. find function 7 such that

is a good predictor of y for a future input x (fitting the data is not
enough!): ~
F(x)=y



Reason for you to know theory

We will speak today and later about applications...

they are not simply using a black box. The best ones are about
the right formulation of the problem (choice of representation
(inputs, outputs), choice of examples, validate predictivity, do not
datamine)

L F(X)=wx+Db



Notes

Two strands in learning theory:
 Bayes, graphical models...
1 Statistical learning theory, regularization (closer to classical

math, functional analysis+probability theory+empirical process
theory...)



Interesting development: the theoretical foundations of
learning are becoming part of mainstream mathematics

BULLETIN (Mew Saries) OF THE

AMERICAN MATHEMATICAL SOCIETY
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[DN THE MATHEMATICAL FOUNDATIONS OF LEARNING

FELIPE CUCKER AND STEVE SMALE

The prablem of leameang 15 arguably al the
very core of bthe problem of mielligence,
balbh biclogioal and artyfiecal,

INTRODUCTION

(1) A main theme of this report i1s t]lL 1|:~L1t1|:|113111p of approximation to learning and
the primary role of saanpling (1 ot e phasize relations
of the theory of learming N particular, there
are large roles for probability tlmuw . as Ef'rz.ut squares, and for
tools and ideas from linear algebra and linear analyvs=is. An advantage of doing this
12 that communication 1= facilitated and the power of core mathematics 1= more

easily bronght to bear.




predictive
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Generalization: estimating value of function where
there are no data (good generalization means
predicting the function well; most important is for
empirical or validation error to be a good proxy of the
prediction error)

Regression: function is real valued

Classification: function is binary



T he learning problem

Thereis an unknown probability distribution on the prod-
uct space Z = X x Y, written u(z) = pu(x,y). We assume
that X is a compact domain in Euclidean space and Y a
closed subset of IR.

The training set S = {(x1.y1),.... Xn,yn)} = {z1,...2n}
consists of » samples drawn i.i.d. from .

H is the hypothesis space, a space of functions f: X — Y.

A learning algorithm is a map L : Z" — ‘H that looks
at S and selects from H a function f¢ : x — y such that
fs(x) &~y in a predictive way.



Thus....the key requirement (main focus of learning
theory) to solve the problem of learning from
examples:
generalization (and possibly even consistency).

A standard way to learn from examples is ERM (empirical risk
minimization)

{
Z V(f(zi), vi)

i=1

r'=-~j||—l

min
feH

The problem does not have a predictive solution in general
(just fitting the data does not work). Choosing an appropriate
hypothesis space A (for instance a compact set of continuous
functions) can guarantee generalization (how good depends on
the problem and other parameters).



Learning from examples: another goal (from inverse
problems) is to ensure that problem is well-posed (solution
exists stable)

A problem is well-posed if its solution

exists, unique and J.S. Hadamard, 1865-1963

is stable, eg depends continuously on the data
(here examples)

9.520, spring 2006



Thus....two key requirements to solve the problem
of learning from examples:
well-posedness and generalization

Consider the standard learning algorithm

jflj:lﬂ— Z V(£ (i), ui)
The main focus of learning theory is predictivity of the
solution eg generalization. The problem is in addition ///-posed.
It was known that by choosing an appropriate hypothesis space
H predictivity is ensured. It was also known that appropriate H
provide well-posedness.

A couple of years ago it was shown that generalization and
well-posedness are eguivalent, eg one implies the other.

Thus a stable solution is predictive and (for
ERM) also viceversa.




More later.....

9.520, spring 2006



Learning theory and natural sciences

Conditions for generalization in learning theory

have deep, almost philosophical, implications:

they may be regarded as conditions that guarantee a
theory to be predictive (that is scientific)



min
feH

%Z V(F(x)-y)+4 [f]

()= K (X X;)

Implies

Equation includes Regularization Networks (special cases
are splines, Radial Basis Functions and Support Vector
Machines). Function is nonlinear and general approximator...

For a review, see Poggio and Smale, The Mathematics of Learning,

Notices of the AMS, 2003



Classical framework but with more general
loss function

The algorithm uses a quite general space of functions or “hypotheses” :
RKHSs.

9,520, spring 2006 Girosi, Caprile, Poggio, 1990



Another remark: equivalence to networks

Many different V lead to the same solution...

Fx)= > cK(x,x)+b C ,

..and can be "written” as a3l U K

the same type of network..where the

value of K corresponds to the "activity”
of the "unit” and the Cc. correspond to !
(synaptic) “weights”




Theory summary
In the course we will introduce

* Generalization (predictivity of the solution)

- Stability (well-posedness)

- RKHSs hypotheses spaces

- Regularization techniques leading to RN and SVMs

* Manifold Regularization (semisupervised learning)

* Unsupervised learning

* Generalization bounds based on stability

* Alternative classical bounds (VC and Vgamma dimensions)

- Related topics

- Applications

<



Syllabus
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Overview of overview

o Supervised learning: real math

o Examples of recent and ongoing in-house engineering
on applications

o Learning and the brain

9.520, spring 2006



Learning from Examples: engineering
applications

ﬁ
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INPUT =

Bioinformatics
Artificial Markets
Object categorization
Object identification
I'mage analysis
Graphics

Text Classification

9.520, spring 2006



Bioinformatics application: predicting type of
cancer from DNA chips signals

Learning from examples paradigm

Statistical Learning Araeliene » Prediction
Algorithm

Examples ' ﬁ

— =il New sample

9.520, spring 2006



Bioinformatics application: predicting type of
cancer from DNA chips

New feature selection SVM:

Only 38 training examples, 7100 features

AML vs ALL: 40 genes 34/34 correct, O rejects.

5 genes 31/31 correct, 3 rejects of which 1 is an error.

AL Memo No.1677
C.B.C.L Paper No.182

Support Vector Machine Classification of Microarray

Data

S. Mukherjee, P. Tamayo, D. Slonim, A. Verri, T. Golub,
J.P. Mesirov, and T. Poggio

Pomeroy, S.L., P. Tamayo, M. Gaasenbeek, L.M. Sturia, M. Angelo, M.E.
McLaughlin, J.Y.H. Kim, L.C. Goumnerova, P.M. Black, C. Lau, J.C. Allen, D.
Zagzag, M.M. Olson, T. Curran, C. Wetmore, J.A. Biegel, T. Poggio, S.

Mukherjee, R. Rifkin, A. Califano, G. Stolovitzky, D.N. Louis, J.P. Mesirov, E.S.

Lander and T.R. Golub. Prediction of Central Nervous System Embryonal
Tumour Outcome Based on Gene Expression, Nature, 2002.

9.520, spring 2006
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Learning from Examples: engineering
applications

ﬁ
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INPUT =

Bioinformatics
Artificial Markets
Object categorization
Object identification
I'mage analysis
Graphics

Text Classification
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Face identification: example

An old view-based system: 15 views

! 'i! ::II. ] d

Performance: 98% on 68 person database
Beymer, 1995

9.520, spring 2006



Learning from Examples: engineering
applications

ﬁ

ﬁ
é
é
d é

INPUT =

Bioinformatics
Artificial Markets
Object categorization
Object identification
I'mage analysis
Graphics

Text Classification
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System Architecture

Preprocessing with
overcomplete
dictionary of Haar
wavelets

!

SVM Classifier

Scanning Iin X,y and
scale

Sung, Poggio 1994; Papageorgiou and Poggio, 1998



Representation: overcomplete dictionary of Haar wavelets; high
dimensional feature space (>1300 features)

Core learning algorithm:
Support Vector Machine
classifier

detection system



Trainable System for Object Detection:
Pedestrian detection - Results




The system was tested in a test car
(Mercedes)








Wir bringen unseren Autos das Sehen bei, weil eine Mutter nicht {iberall sein kann.

Ebnee Shiller kenn infe Kinder richl immer beschiikoen. Besondon dann cuchi, s s alteme iy SiraBotedkesr
wnlerweps sind, Deshalb arcesten vif dn Fulglngeiercennungs-Systemen [Gr prsere' Ao, dhe dom Fahro

hafles, Wenschan aul der Strafe sehoellor ' erkennen. nestalt yon Brochislen gines Selurde warn] das

Sywbern den Fahrer, damil v bedser reagieren khnn. Diede inteligenien Technalogsen sur Vermeiduag var

Uniillen ertanciof] die DaimierChrpsier Farschiang schon Snate. Fir die Sutdmabde van morgen

Tietere Einblicke in dis Yision wom Unfallfrelen Fahren' echalton Sk unter: www.dalmlerchrgsiod com

DAIMLERCHRYSLER

AnTeers hor queshant o oome,




People classification/detection: training the
system

1848 patterns | - e 7189 patterns

Representation: overcomplete dictionary of Haar wavelets; high
dimensional feature space (>1300 features)

pedestrian detection

9.520, spring 2006



Face classification/detection: training the
system

Representation: grey levels (normalized) or overcomplete
dictionary of Haar wavelets

face detection

9.520, spring 2006



Face identification: training the system

AW A

Representation: grey levels (normalized) or overcomplete
dictionary of Haar wavelets

face identification

9.520, spring 2006



Computer vision: new Streetscenes
Project

Project Timeline

Construction of Automatic Recognition of Automatic Scene
the StreetScenes | | Learn_lr_mg of object | 10 Obje_ct | Description
Database specific features Categories
or parts

Lior Wolf, Stan Bileschi, ...



Learning from Examples: Applications

 —— —
——
INPUT = —  OUTPUT

ﬁ ﬁ

Object identification
Object categorization

Graphics
Finance
Bioinformatics

9.520, spring 2006



Image Analysis

IMAGE ANALYSIS: OBJECT RECOGNITION AND POSE
ESTIMATION

= Bear (0° view)

= Bear (45° view)

9.520, spring 2006



Computer vision: analysis of facial expressions

Y
.

The main goal is to estimate basic facial parameters, e.qg.

degree of mouth openness, through learning. One of the main
applications is video-speech fusion to improve speech
recoghition systems.




Learning from Examples: engineering
applications
CB(L, ——————————————— 17

ﬁ

ﬁ
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INPUT -

Bioinformatics

Artificial Markets

Object categorization
Object identification

I'mage analysis

Image synthesis, eg Graphics
Text Classification

9.520, spring 2003



Image Synthesis

Metaphor for UNCONVENTIONAL GRAPHICS

®=0°view =

O = 45° view =

9.520, spring 2006



Reconstructed 3D Face Models from 1 image

3D Reconstruction from a Single Image

9.520, spring 2006



Reconstructed 3D Face Models from 1
image

Neue Ansichten aus einem eizelnen Bild

Rekonstruktion Mit Texturextraktion

Vorloae H imi
Vorlage ohne Texturextraktion und Mimik

Schlagschatten Neue Beleuchtung Rotation

9.520, spring 2006



V. Blanz, C. Basso,
T. Poggio
and
T. Vetter, 2003




Ezzat, Geiger, Poggio, Sig6raph 2002




Trainable Videorealistic Face Animation

For any speech input the system
provides as output a synthetic
. video stream
SYSTem learns fr'om 4 mins Phone Stream
of video the face appearance IR BlIAEIIAEIAET PRl DH/SIL
(Morphable Model) and the
speech dynamics of the ‘
per'SOn g;:ﬁﬁteos?; Phonetic Models
MMM Image Prototypes

Tony EZZGT,Geiger, Poggio, SigGraph 2002




A Turing test: what i1s real and what 1s
synthetic?

We assessed the realism of the talking face with
psychophysical experiments.

Data suggest that the system passes a visual
version of the Turing test.

Experiment | # subjects | % correct | t | p<
Single pres. 27 530 23 [ 0.3
Fast single pres. | 21 32 1% 0.619 | 0.5
" Double pres. 27 16.67% 0.7y |05

Table 1: Levels of correct identification of real and synthetic se-

quences. t represents the value from a standard t-test with signifi-
cance level of p<_.



Overview of overview

o Supervised learning: the problem and how o frame
it within classical math

o Examples of in-house applications

o Learning and the brain

9.520, spring 2006



Learning to recognize objects and the ventral
stream in visual cortex

g command

Categorical judgments, 140=190 m .
decision making ' Simple visual forms,
edges, comears

""\-_ -
e T spinal cord

g T finger muscle e "160=220 ms
180=260 ms




Some numbers

Human Brain
1011-- 1012 neurons
1014 + synapses
Neuron

Fine dendrites : 0.1 u diameter
Lipid bylayer membrane : 5 nm thick

Fundamental time length : 1 msec



A theory
of the ventral stream of visual cortex

Thomas Serre, Minjoon Kouh, Charles Cadieu, Ulf Knoblich
and Tomaso Poggio

The McGovern Institute for Brain Research,
Department of Brain Sciences
Massachusetts Institute of Technology

NG

department of brain and

Enitive s q_gce_leT




The Ventral Visual Stream: From V1to IT

.........
..............
'''''''''''''
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Hubel & Wiesel, 195!



Summary of “basic facts”

Accumulated evidence points to three (mostly accepted)
properties of the ventral visual stream architecture:

* Hierarchical build-up of invariances (first to
translation and scale, then to viewpoint etc.) , size of
the receptive fields and complexity of preferred
stimuli

+ Basic feed-forward processing of information (for
“immediate” recognition tasks)

- Learning of an individual object generalizes to scale
and position



Mapping the ventral stream into a model

Prefrontal
Cortex

V2,V3,V4,MT,MST

TS
LIP,VIP,DP,7a

Rostral S

PG Cortex

MSTp|

I

I

N

dorsal stream
'where' pathway
Serre, Kouh, Cadieu, Knoblich, Poggio, 2
Riesenhuber et al, Nat. Neuro, 1999,2000

ventral stream

'‘what' pathway

L iq
a6
|l

O Simple cells

LY
\_,' Complex cells

— Tuning
=== Softmax

— Main routes

VTUs

c3

C2b

83

S2b

c2

52

C1

S1



The model

Claims to interpret or predict several existing data in microcircuits and system
physiology, and also in cognitive science:

* View-tuning of IT cells (Logothetis)

* Response to pseudomirror views

« Effect of scrambling

« Multiple objects

* Robustness/sensitivity to clutter

» K. Tanaka’s simplification procedure
» Categorization tasks (cats vs dogs)
* Invariance to translation, scale etc...
* Read-out data...

» Gender classification

* Face inversion effect : experience, viewpoint, other-race, configural
vs. featural representation

* Binding problem, no need for oscillations...



Neural Correlate of Categorization (NCC)

Define categories in morph space

60% Dog

80% Cat 607% Cat Morphs 80% Dog

Morphs Morphs Morphs

. Prototypes

Prototypes 100% Dog

100% Cat

Category
9.520, spring 2006 boundary



Categorization task

Train monkey on categorization task

Fixation

500 ms. Sample

600 ms.

After training, record from neurons in IT & PFC

9.520, spring 2006



Single cell example: a “categorical” PFC neuron that
responds more strongly to DOGS than CATS

Fixation  Sample Choice

Dog 100%
Dog 80%
— Dog 60%

[N
o

\l

—~
N
1L
N—
Q
©
o
(@)
§=
=
LL

f

Cat 60%

1
-500 500 1000 1500 2000
Time from sample stimulus onset (ms

D. Freedman + E. Miller + M.
Riesenhuber+T. Poggio (Science,

9.520, spring 2006 2001)
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The model fits many physiological data,
predicts several new ones...

recently it provided a surprise (for us)...



...when we compared its performance with
machine vision...



Sample Results on the CalTech 101-object dataset

saxophone : 95.50

camera : 91.20 headphone : 96.70  crocodile : 95.30
“ .

& ) ] L T

mandolin : 91.40 pigeon : 92.00 hedgehog : 91.50  scissors : 97.90 pagoda : 97.10 scissors : 97.90
P TIE ol b \

)

octopus : 94.80 headphone : 96.70




The model performs at the level of the best

computer vision systems

‘ Benchmark Model

Leaves (Calt.)
Cars(Calt.)
Faces(Calt.)
Airplanes(Calt.)
Moto. (Calt.)
Faces(MIT)
Cars (MIT)

Weber Welling andPerona, 2000
Fergus,Perona and Zisserman,2003| 84.8

Fergus,Perona and Zisserman,2003| 96.4
Fergus,Perona and Zisserman, 2003
Fergus,Perona and Zisserman,2003
Heisele, Serre and Poggio, 2002
Torralba,Murphyand Freeman,2004| 75.4




..and another surprise...

.. was the comparison with human performance
(Thomas Serre with Aude Oliva)
on rapid categorization of complex natural images



Experiment: rapid (to avoid backprojections)
animal detection in natural images

Image

Animal present

~ or not ?

[Thorpe et al, 1996; Van Rullen & Koch, 2003; ~

Oliva & Torralba, in press]



Targets and distractors

Close-up body Medium-far body Far body view &
view view groups
. —_—_

erre, Oliva & Poggio, in prep]



Humans achieve model-level performance

Human: 80% correct
VS.
Model: 82% correct

close-body medium-body far-body

[Serre, Oliva & Poggio, in prep]



Theory supported by data in V1, V4, IT; works as well as the best computer vision; mimics human
performance_

A 4

Prefrontal
Cortex

vV2,V3.V4,MT,MST

TS
LIP.VIP,DP.7a
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O Simple cells

A
i
\_.! Complex cells

Freedman, Science, 2002
Logothetis et al., Cur. Bio., 1995
Gawne et al., J. Neuro., 2002
Lampl et al.,J. Neuro, 2004.

ventral stream
'what' pathway

dorsal stream
'where' pathway

— Tuning = Mainroutes

=== Softmax




A challenge for learning theory:

an unusual, hierarchical architecture
with unsupervised and supervised learning
and learning of invariances...

We will see later why this is unusual and interesting for learning
theory!
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