Object Detection using a Cascade of Classifiers

Mike Jones Mitsubishi Electric Research Laboratories

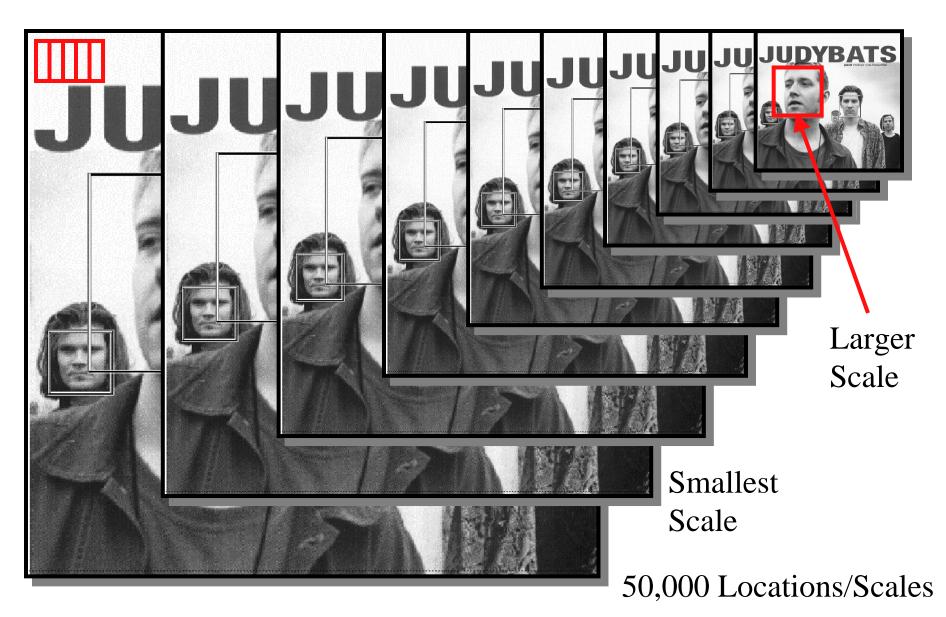
in collaboration with Paul Viola and Dan Snow

The Object Detection Problem

Previous Work

- Mixture of Gaussians Sung and Poggio (MIT)
- Neural network Rowley, Baluja and Kanade (CMU)
- Naive Bayes Schneiderman and Kanade (CMU)
- SVM Papageorgiou and Poggio (MIT)
- Partial eval of SVMs Romdhani, Torr, Scholkopf, Blake (Microsoft)
- Color models many authors

The Classical Face Detection Process



Classifier is Learned from Labeled Data

- Training Data
 - 5000 faces
 - All frontal
 - -10^8 non faces
 - Roughly normalized
 - Scale, translation
- Many variations
 - Across individuals
 - Illumination

- Pose (rotation both in plane and out)

Cascade of classifiers approach

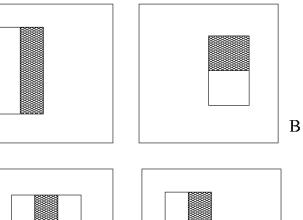
- Detector is a cascade of classifiers
- Classifier is a linear combination of simple features
- Integral image representation used for efficient evaluation of rectangle features
- AdaBoost used for feature selection during training

The result is a very efficient and robust detector

Image Features

"Rectangle filters"

С



D

Generalized Haar wavelets

Differences between sums of pixels in adjacent rectangles

A feature is defined as

$$h_t(x) = \begin{cases} \alpha_t & \text{if } f_t(x) > \theta_t \\ \beta_t & \text{otherwise} \end{cases}$$

where $f_t(x)$ is a filter.

Integral Image

• Define the Integral Image

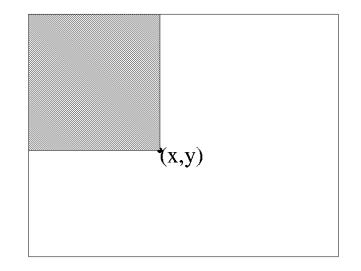
$$I'(x, y) = \sum_{\substack{x' \le x \\ y' \le y}} I(x', y')$$

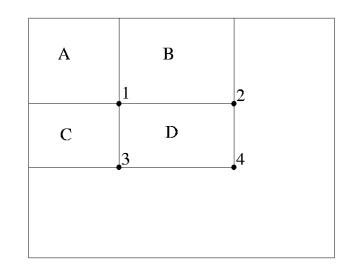
• Any rectangular sum can be computed in constant time:

$$D = 1 + 4 - (2 + 3)$$

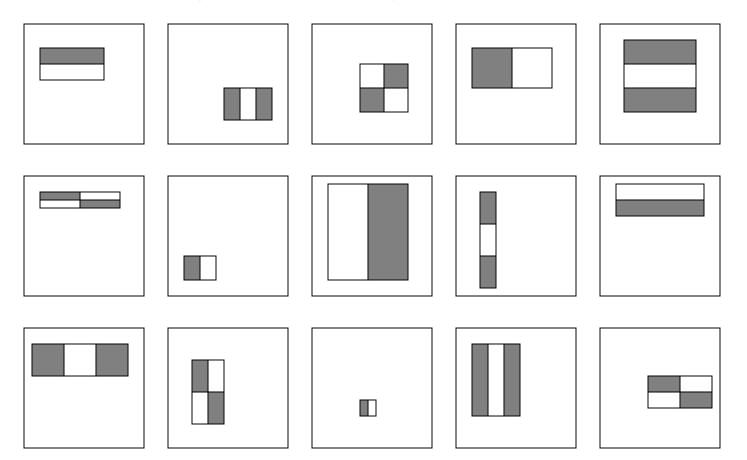
$$= A + (A + B + C + D) - (A + C + A + B)$$
$$= D$$

• Rectangle filters can be computed as differences between rectangles





Huge "Library" of Filters

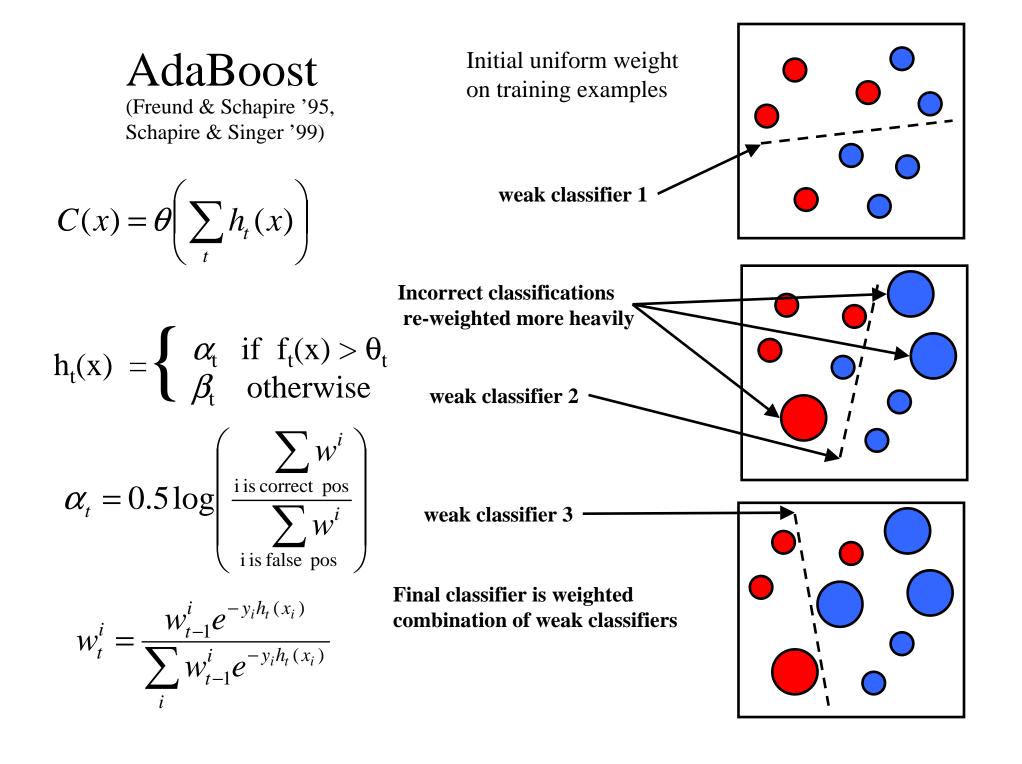


Classifier is linear combination of features

• Perceptron yields a sufficiently powerful classifier

$$C(x) = \begin{cases} 1 & if \sum_{t} h_t(x) > T \\ 0 & otherwise \end{cases}$$

• Use AdaBoost to efficiently choose best features



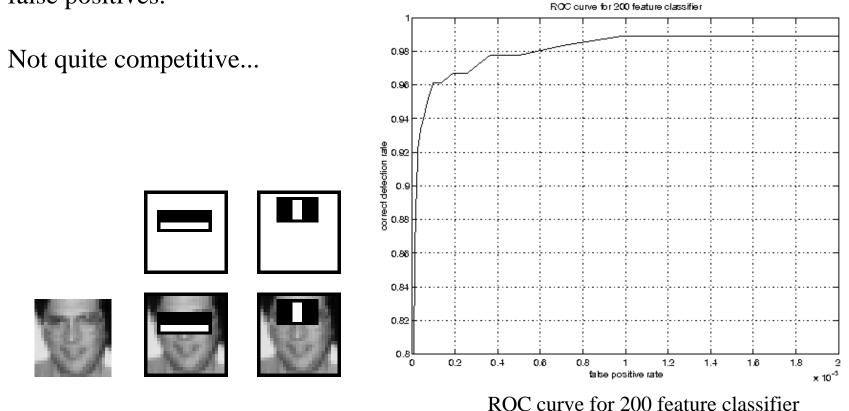
AdaBoost for Efficient Feature Selection

- Our Features = Weak Classifiers
- For each round of boosting:
 - Evaluate each rectangle filter on each example
 - Sort examples by filter values
 - Select best threshold for each filter (min error)
 - Sorted list can be quickly scanned for the optimal threshold
 - Select best filter/threshold combination
 - Weights for this feature are a simple function of weighted errors
 - Reweight examples

Example Classifier for Face Detection

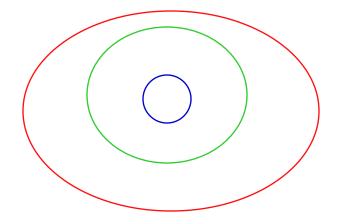
A classifier with 200 rectangle features was learned using AdaBoost

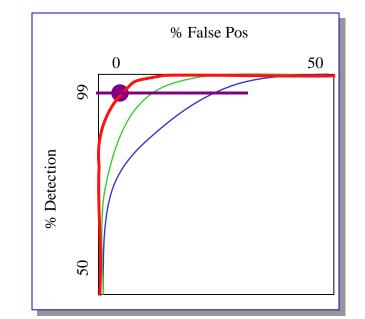
95% correct detection on test set with 1 in 14084 false positives.



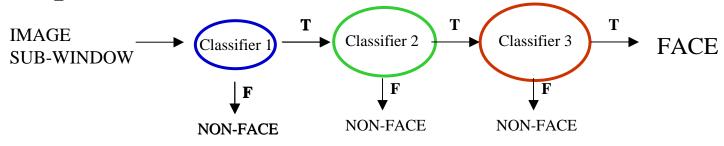
Trading Speed for Accuracy

• Given a nested set of classifier hypothesis classes





• Computational Risk Minimization

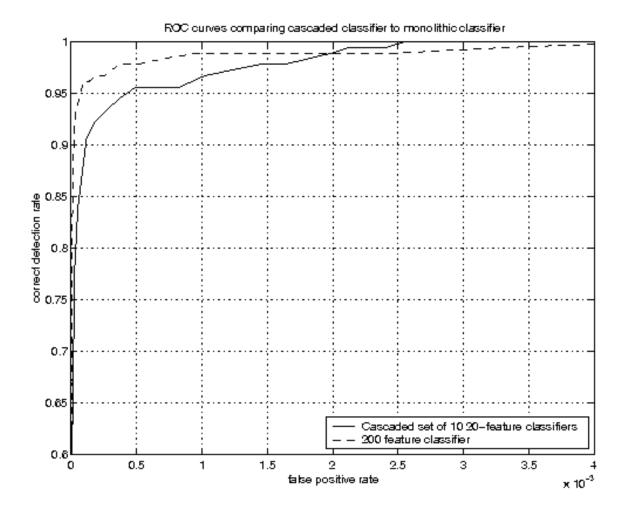


Cascade Training

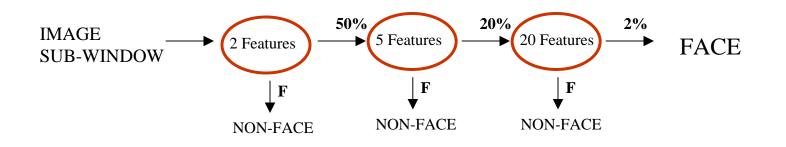
Given initial training set of positive and negative examples

- 1. Train a strong classifier with N features using AdaBoost
- Use validation set to find strong classifier threshold that meets detection rate and false positive rate criteria. If not possible, go back to step 1 to add N more features.
- 3. Use current cascade to find false positives in large training set of negative examples.
- 4. Create new set of negative examples from the false positives. Positive examples can stay the same as before.
- 5. Go to step 1 to train a new classifier in the cascade.

Experiment: Simple Cascaded Classifier



Cascaded Classifier



- A 2 feature classifier achieves 100% detection rate and about 50% false positive rate.
- A 5 feature classifier achieves 100% detection rate and 40% false positive rate (20% cumulative)
 using data from previous stage.
- A 20 feature classifier achieve 100% detection rate with 10% false positive rate (2% cumulative)

A Real-time Face Detection System

Training faces: 4916 face images (24 x 24 pixels) plus vertical flips for a total of 9832 faces

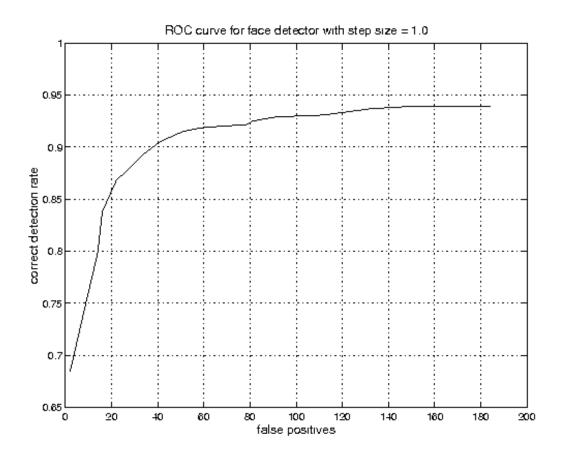
Training non-faces: 350 million subwindows from 9500 non-face images

Final detector: 38 layer cascaded classifier The number of features per layer was 1, 10, 25, 25, 50, 50, 50, 75, 100, ..., 200, ...

Final classifier contains 6061 features.

Accuracy of Face Detector

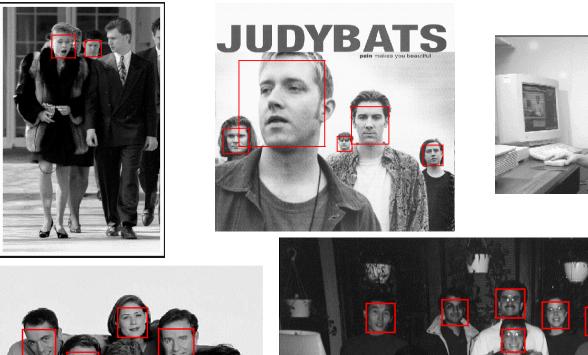
Performance on MIT+CMU test set containing 130 images with 507 faces and about 75 million sub-windows.

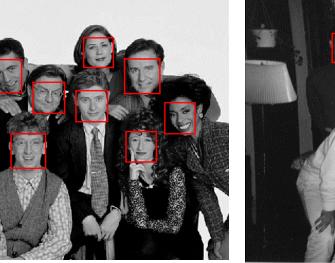


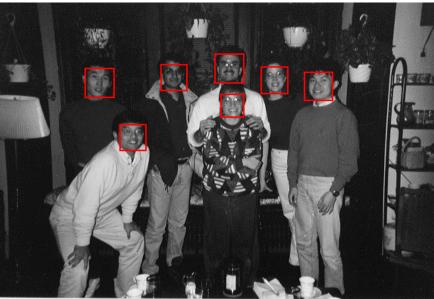
Comparison to Other Systems

False Detections	10	31	50	65	78	95	110	167
Detector								
Viola-Jones	76.1	88.4	91.4	92.0	92.1	92.9	93.1	93.9
Viola-Jones	81.1	89.7	92.1	93.1	93.1	93.2	93.7	93.7
(voting)								
Rowley-Baluja-	83.2	86.0				89.2		90.1
Kanade								
Schneiderman-				94.4				
Kanade								

Output of Face Detector on Test Images





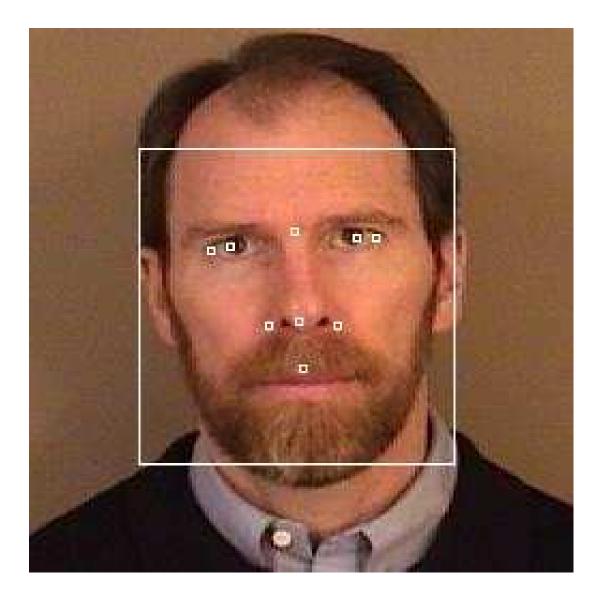


Live Demo

Profile Detection

Rotated Face Detection

Facial Feature Detection

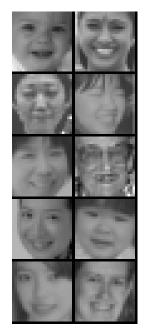


Gender Classification

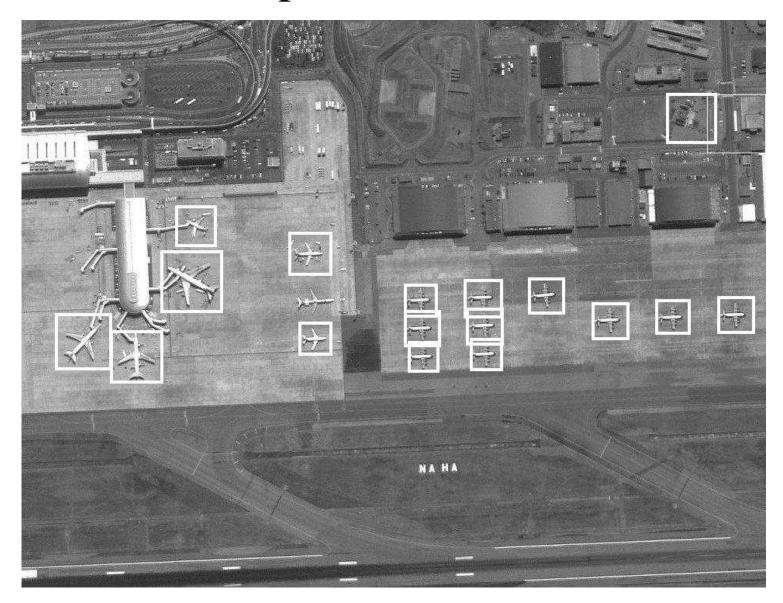
- Gender classifier is trained from face images divided into male and female classes
- Achieves about 80% accuracy

Males

Females



Airplane Detection



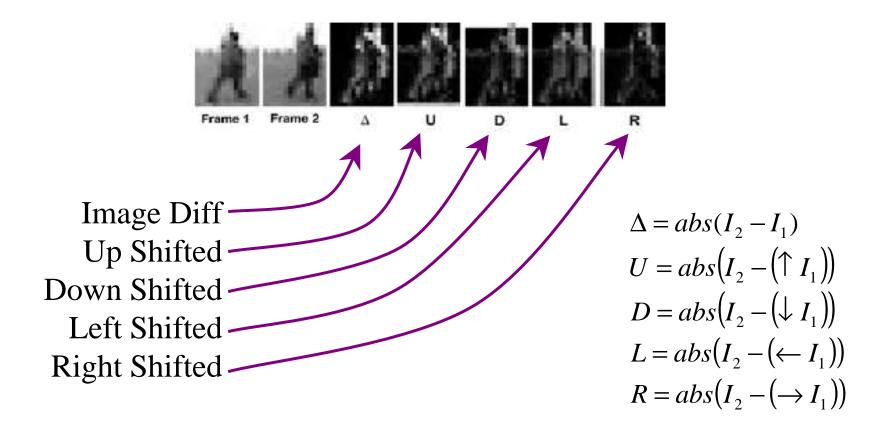
16 out of 17 detections, 2 false alarms

Pedestrian Detection

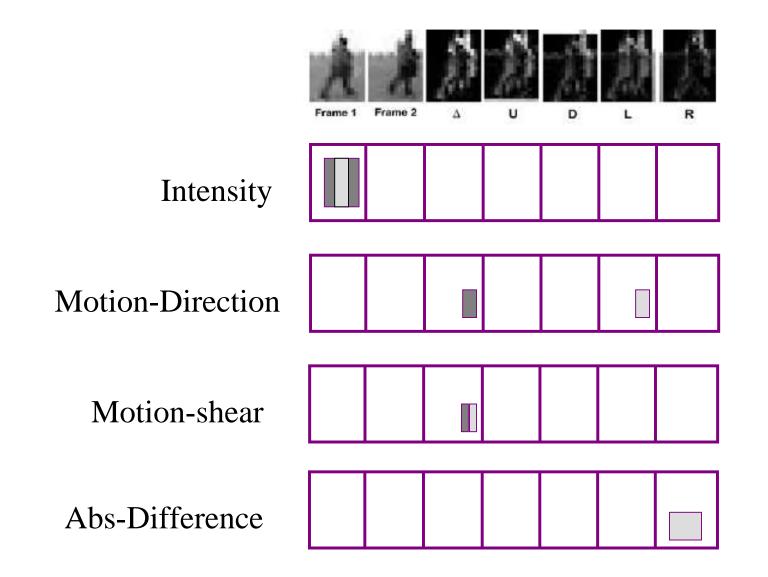
Problems

- Low Resolution ~ 20 pixels high
- Varying Lighting / Clothing / Pose

Input Representation

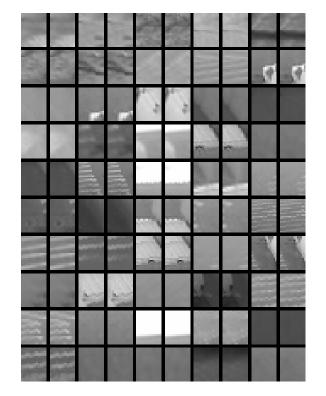


Pedestrian Detection Features



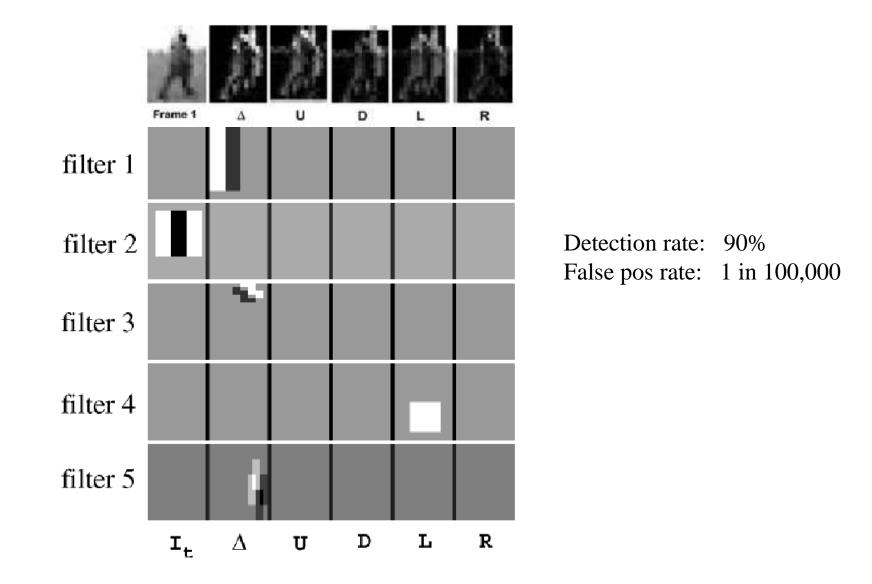
Some example patterns used for training

Positive example pairs



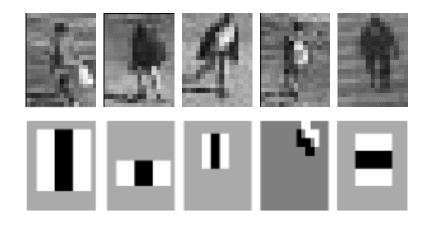
Negative example pairs

Motion and Appearance Filters Learned

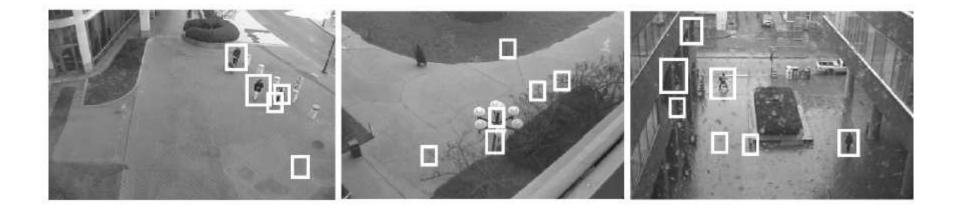


Experiments

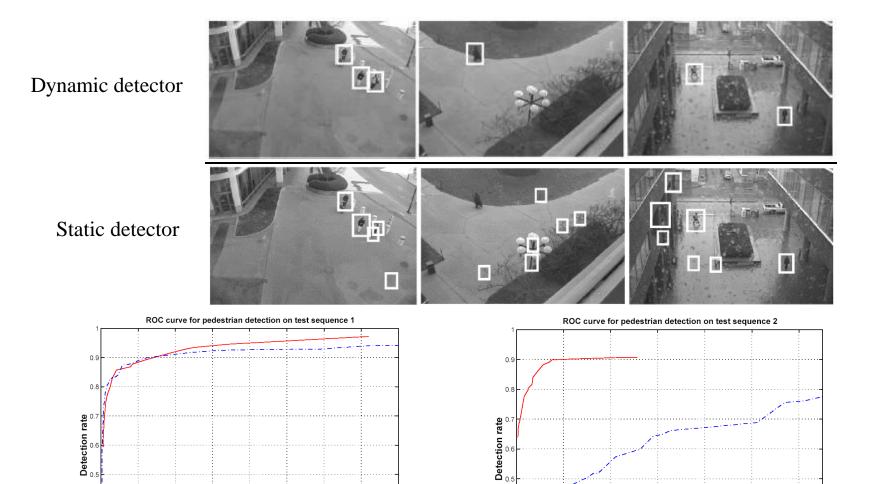
Constructed a baseline Viola-Jones static detector



Detection rate: 80% False pos rate: 1 in 100,000



Before and After



dynamic detector static detector

x 10⁻⁵

0.4

0.3

0.2

0.4

0.3

0.2

2

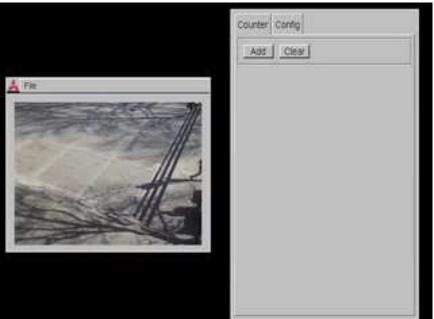
False positive rate

False positive rate

dynamic detector
static detector

x 10⁻⁵

Results Videos



The Face Recognition Problem

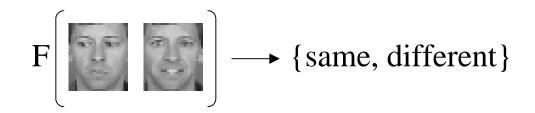
System is given a *gallery* of known faces:

Input is a *probe* face:

Problem is to determine if the probe face matches any of the gallery faces

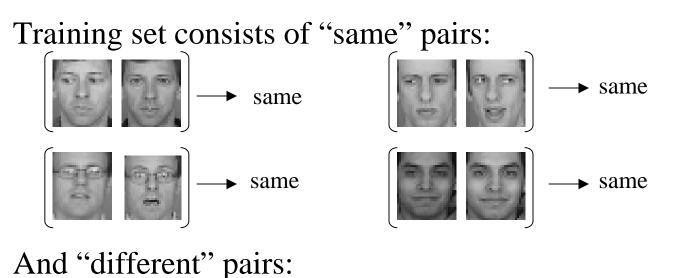
Face recognition as binary classification

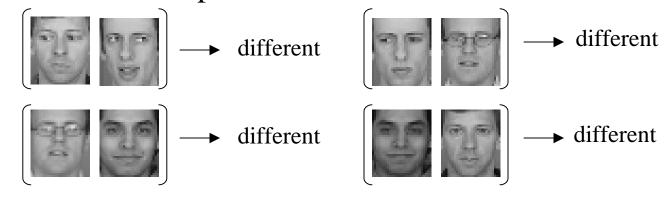
Build a face verifier, F() Input: two face images Output: {same, different}



Compare probe image to every gallery image.

Learn Verifier from Examples





Details of Face Verifier

Our verifier is a linear combination of simple features.

A feature is evaluated on each image in the input pair, the results are subtracted, the absolute value is taken and then thresholded.

$$f_{i} = \begin{cases} \alpha \text{ if } \left| \left| \prod_{i=1}^{n} - \prod_{i=1}^{n} \right| > T \right| \\ \beta \text{ otherwise} \end{cases}$$
$$F = \theta(\sum_{i=1}^{n} f_{i} + b)$$