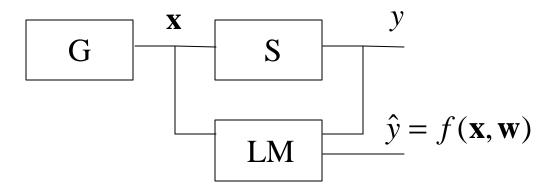
9.913 Pattern Recognition for Vision Class IV Part I – Bayesian Decision Theory Yuri Ivanov

- Roadmap to Machine Learning
- Bayesian Decision Making
 - Minimum Error Rate Decisions
 - Minimum Risk Decisions
 - Minimax Criterion
 - Operating Characteristics

Notation

x - scalar variable \mathbf{x} - vector variable, sometimes x when clear p(x) - probability density function (continuous variable) P(x) - probability mass function (discrete variable) $p(\underbrace{a,b,c,d}_{density of these} | \underbrace{e, f, g, h}_{function of these})$ - conditional density $\int f(\mathbf{x})d\mathbf{x} \equiv \int f(x_1, x_2, \dots, x_n)dx_1dx_2\dots dx_n$ $\equiv \iint \dots \iint f(x_1, x_2, \dots, x_n) dx_1 dx_2 \dots dx_n$ W_1 A > B - if A > B then the answer is ω_1 , otherwise ω_2 W_{2}

Learning machine:



G – Generator, or Nature: implements $p(\mathbf{x})$ S – Supervisor: implements $p(y|\mathbf{x})$ LM - Learning Machine: implements $f(\mathbf{x}, \mathbf{w})$ Loss and Risk

 $L(y, f(\mathbf{x}, \mathbf{w}))$ - Loss Function – how much penalty we get for deviations from true y

$$R(\mathbf{w}) = \int L(y, f(\mathbf{x}, \mathbf{w})) p(\mathbf{x}, y) d\mathbf{x} dy$$
 - Expected Risk – how
much penalty we get on
average

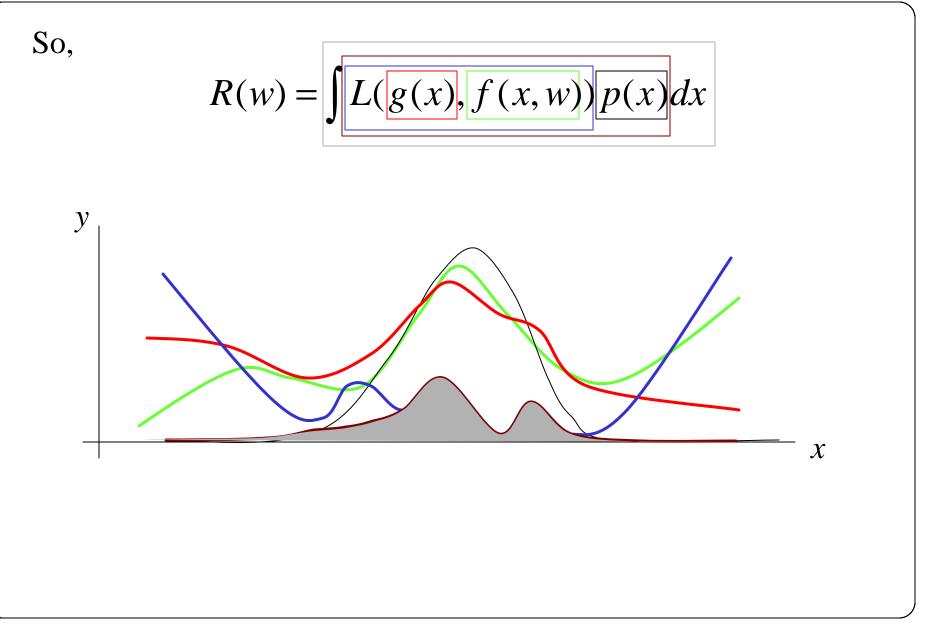
Goal of learning is to find $f(x, w^*)$ such that $R(w^*)$ is minimal.

What does it mean?

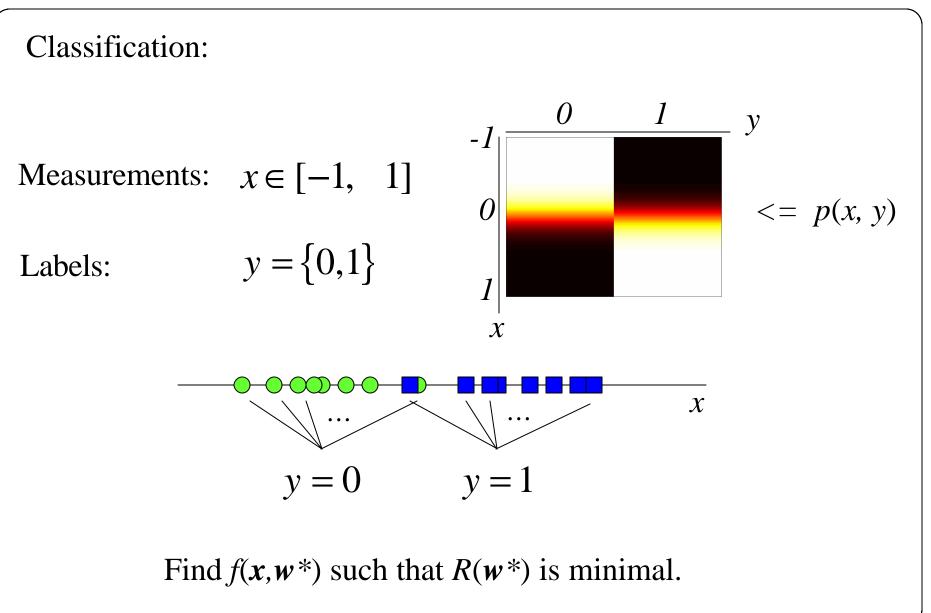
$$R(w) = \iint L(y, f(x, w)) p(x, y) dxdy$$

From basic probability: $p(x, y) = p(y | x) p(x)$
If no noise: $p(y | x) = d(y, g(x))$
$$\prod R(w) = \int L(g(x), f(x, w)) p(x) dx$$

Illustration cont.



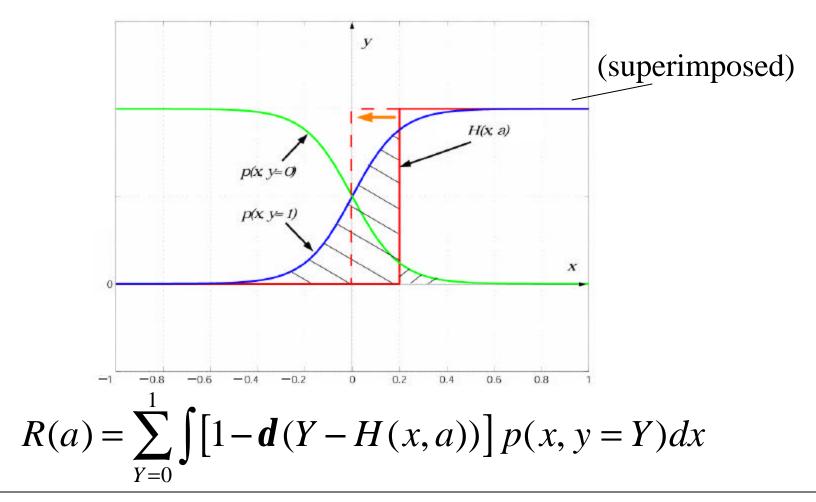
Example



Example

Let's choose f(x,a) = H(x,a) - step function

L(y, f(x, a)) = 1 - d(y - H(x, a)) - +1 for every mistake



Learning in Reality

Fundamental problem: where do we get p(x, y)???

What we want:
$$R(\mathbf{w}) = \int L(y, f(\mathbf{x}, \mathbf{w})) p(\mathbf{x}, y) d\mathbf{x} dy$$

Approximate: estimate risk functional by averaging loss over *observed* (training) data.

What we get:

$$R(\mathbf{w}) \leftarrow R_e(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^n L(y_i, f(\mathbf{x}_i, \mathbf{w}))$$

Replace expected risk with empirical risk

Taxonomies of machine learning:

- by source of evaluation Supervised, Transductive, Unsupervised, Reinforcement
- by inductive principle ERM, SRM, MDL, Bayesian estimation
- by objective classification, regression, vector quantization and density estimation

- Supervised (*classification*, *regression*) Evaluation source - immediate error vector, that is, we get to see the true y
- Transductive

Evaluation source – immediate error vector for SOME of the data

• Unsupervised (*clustering*, *density estimation*) Evaluation source - internal metric – we don't get to see true y

• Reinforcement

Evaluation source - environment – we get to see some scalar value (possibly delayed) that in some way related to whether the label we chose was correct...

• Empirical Risk Minimization (ERM)

$$\min_{\mathbf{w}} \frac{1}{n} \sum_{i=1}^{n} L(y_i, f(\mathbf{x}_i, \mathbf{w})), \quad f(\mathbf{x}_i, \mathbf{w}) \in \mathfrak{I}$$

- Structural Risk Minimization (SRM) $\min_{\mathbf{w},h} (\frac{1}{n} \sum_{i=1}^{n} L(y_i, f(\mathbf{x}_i, \mathbf{w})) + \Phi(h)),$ $f(\mathbf{x}_i, \mathbf{w}) \in \mathfrak{Z}_k, \quad \mathfrak{Z}_1 \subset \mathfrak{Z}_2 \subset \ldots \subset \mathfrak{Z}_k \subset \ldots, \ k \propto h$
- Minimum Description Length

$$\ell(D,H) = \ell(D|H) + \ell(H) \implies \min_{\mathbf{w}} (\frac{1}{n} \sum_{i=1}^{n} L(y_i, f(\mathbf{x}_i, \mathbf{w})) + \Phi(\mathbf{w}))$$

• Bayesian Estimation $P(\mathbf{x}|\mathbf{X}) = \int P(\mathbf{x}|\mathbf{q}) p(\mathbf{q}|\mathbf{X}) d\mathbf{q} \implies \min(\frac{1}{n} \sum_{i=1}^{n} L(y_i, f(\mathbf{x}_i, \mathbf{w})) + \Phi(P(\mathbf{w})))$ • Classification

$$L(y, f(\mathbf{x}, \mathbf{w})) = 1 - \delta[(y, f(\mathbf{x}, \mathbf{w}))]$$

• Regression

$$L(y, f(\mathbf{x}, \mathbf{w})) = (y - f(\mathbf{x}, \mathbf{w}))^2$$

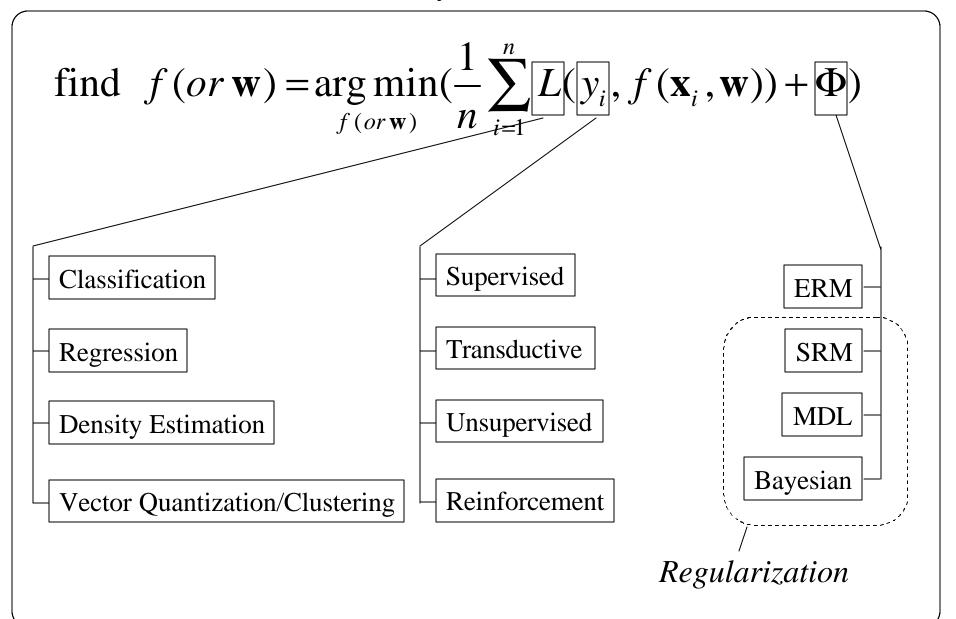
• Density Estimation

$$L(f(\mathbf{x}, \mathbf{w})) = -\log(f(\mathbf{x}, \mathbf{w}))$$

• Clustering/Vector Quantization

$$L(f(\mathbf{x}, \mathbf{w})) = (\mathbf{x} - f(\mathbf{x}, \mathbf{w})) \cdot (\mathbf{x} - f(\mathbf{x}, \mathbf{w}))$$

The Lay of the Land



Class Priors

Making a decision about observation x is finding a rule that says: If x is in region A, decide a, if x is in region B, decide b...

$$\boldsymbol{W}$$
 - state of nature $\boldsymbol{W} = \left\{ \boldsymbol{W}_i \right\}_{i=1}^C$

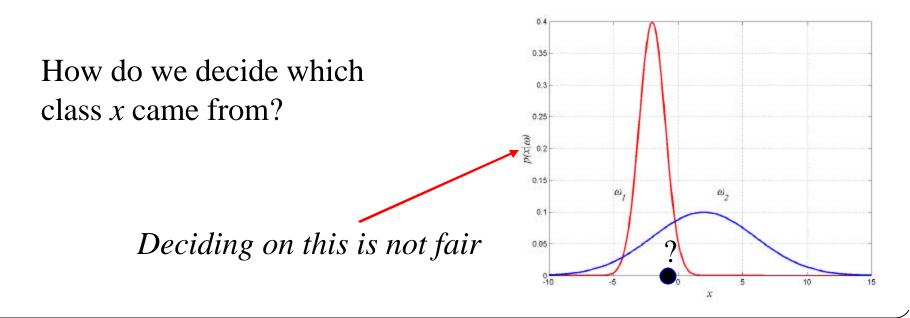
$$P(\mathbf{w})$$
 - *Prior* probability Shorthand $P(\mathbf{w}_i) \equiv P(\mathbf{w} = \mathbf{w}_i)$
$$\sum_{i=1}^{C} P(\mathbf{w}_i) = 1$$

Poor man's decision rule:

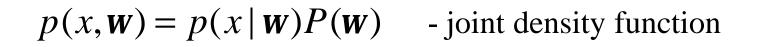
Decide
$$W_1$$
 if $P(W_1) > P(W_2)$ otherwise W_2

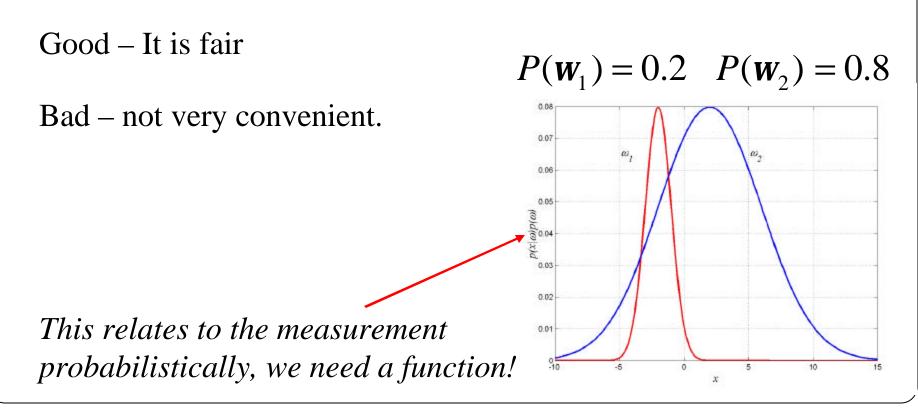
 $p(x | \mathbf{w})$ - class-conditional density function $\int_{-\infty}^{\infty} p(x | \mathbf{w}_i) dx = 1$

 $p(x | \mathbf{W})$ - density for x given that the nature is in the state \mathbf{W}



Joint Density

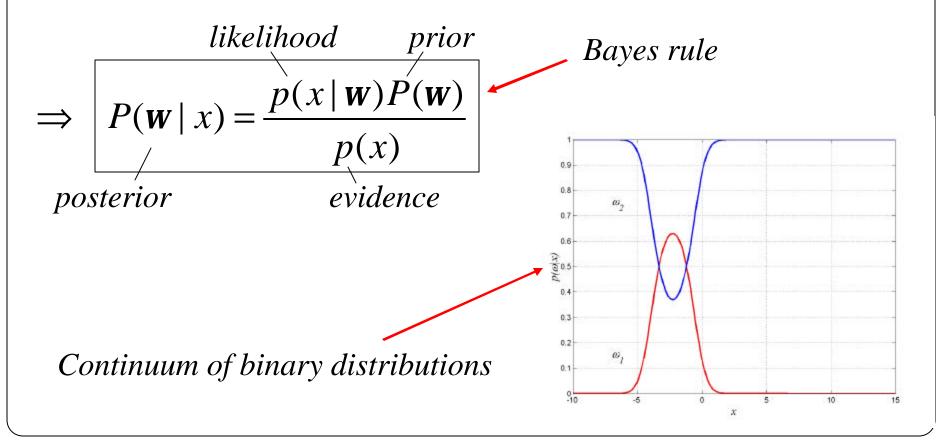




Bayes Rule and Posterior

We want a probability of ω for each value of x: $P(\mathbf{w} \mid x)$

Note that
$$p(x, \mathbf{w}) = p(x | \mathbf{w}) P(\mathbf{w}) = P(\mathbf{w} | x) p(x) \implies$$



Marginalization

Bayes Rule: how to convert prior to posterior by using measurements:

$$P(\mathbf{w} \mid x) = \frac{p(x \mid \mathbf{w})P(\mathbf{w})}{p(x)}$$

What is p(x)?

$$p(x) = \sum_{i=1}^{C} p(x, \mathbf{w}_i) = \sum_{i=1}^{C} p(x | \mathbf{w}_i) P(\mathbf{w}_i)$$

Or, more generally:

$$p(x) = \int p(x, y) dy$$
 - marginalization

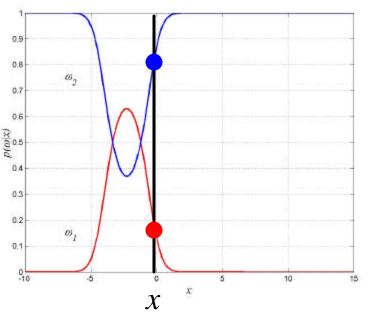
Making Decisions

With posteriors we can compare class probabilities

Intuitively:

$$\boldsymbol{w} = \arg \max \left(p(\boldsymbol{w}_i \mid \boldsymbol{x}) \right)$$

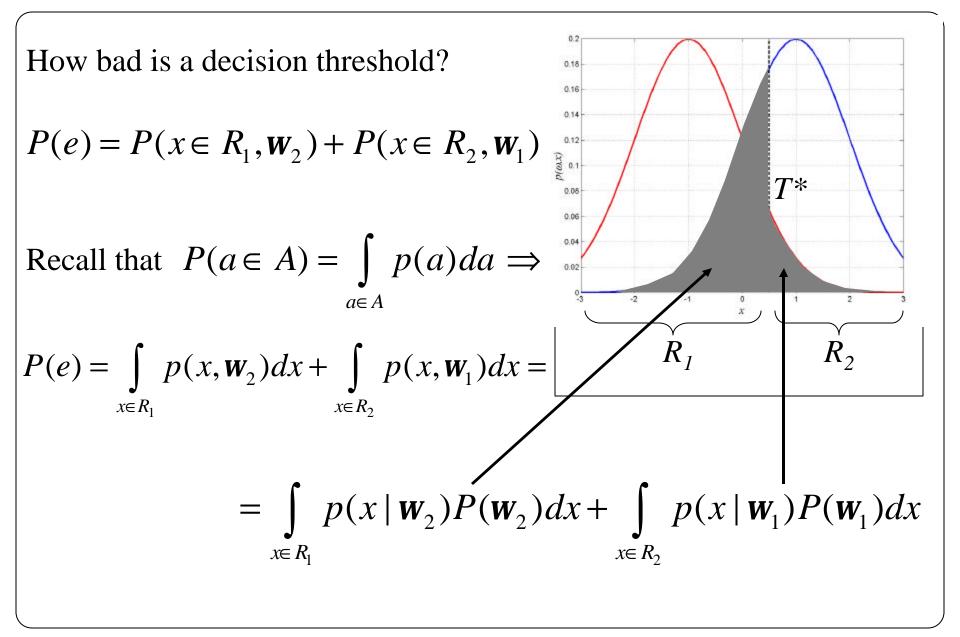
What is the probability of error?



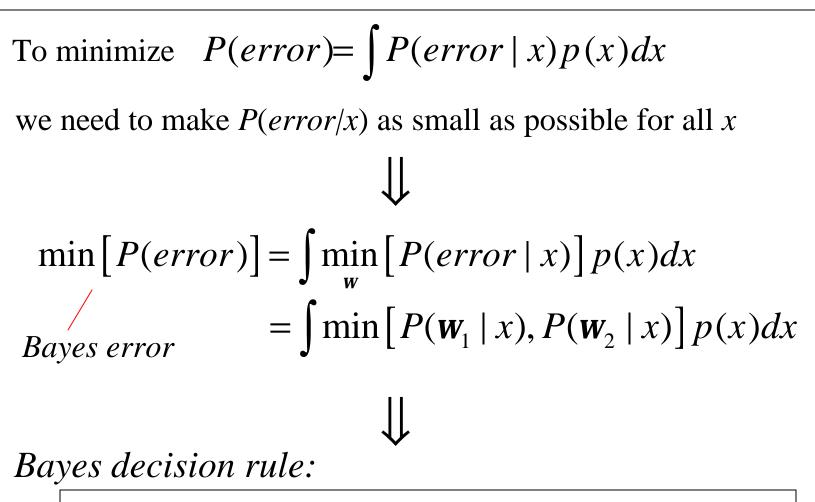
 $p(error | x) = \begin{cases} p(\mathbf{w}_2 | x) & \text{if we choose } \mathbf{w}_1 \\ p(\mathbf{w}_1 | x) & \text{if we choose } \mathbf{w}_2 \end{cases}$

$$P(error) = \int P(error, x) dx = \int P(error \mid x) p(x) dx$$

Errors

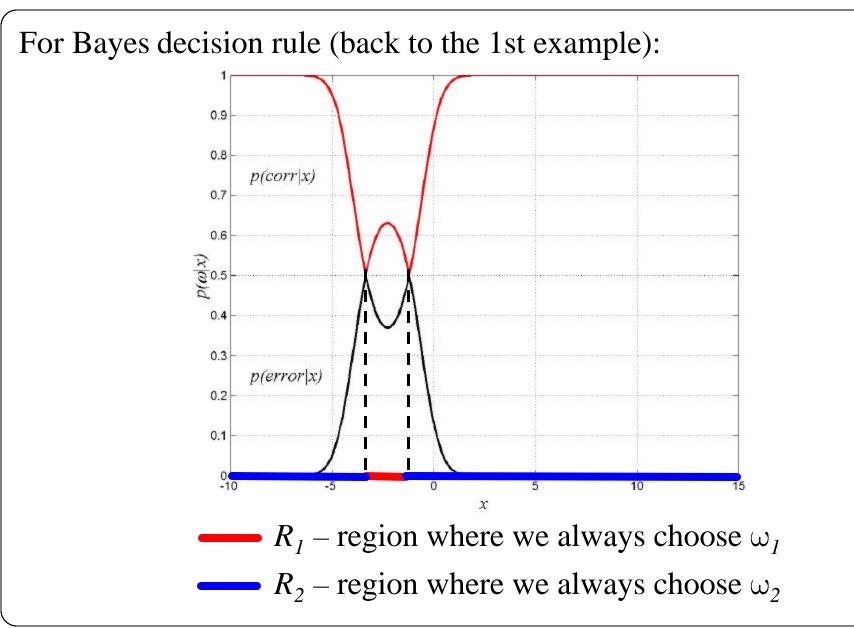


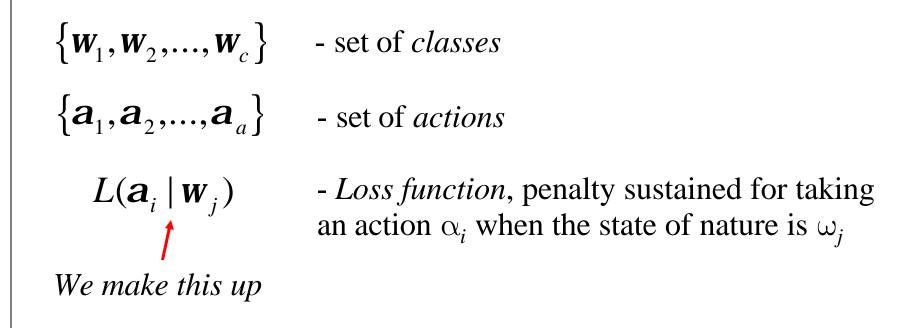
Bayes Decision Rule



Decide w_1 if $P(w_1 | x) > P(w_2 | x)$; otherwise w_2

Bayes Decision Rule





For $x \in \mathbb{R}^d$ conditional risk for taking an action α_i in ω_j is the expected (average) loss for classifying ONE *x*:

$$R(\boldsymbol{a}_i \mid x) = \sum_{j=1}^{c} L(\boldsymbol{a}_i \mid \boldsymbol{w}_j) P(\boldsymbol{w}_j \mid x)$$

Bayes Risk

We will see a lot of x –es. To see how well we do, we average again:

$$R = \int R(\boldsymbol{a}_i \mid x) p(x) dx = \int \left[\sum_{j=1}^{c} L(\boldsymbol{a}_i \mid \boldsymbol{w}_j) P(\boldsymbol{w}_j \mid x) \right] p(x) dx$$
$$= \int \left[\sum_{j=1}^{c} L(\boldsymbol{a}_i \mid \boldsymbol{w}_j) p(\boldsymbol{w}_j, x) \right] dx$$

This is exactly the expression for expected risk from before

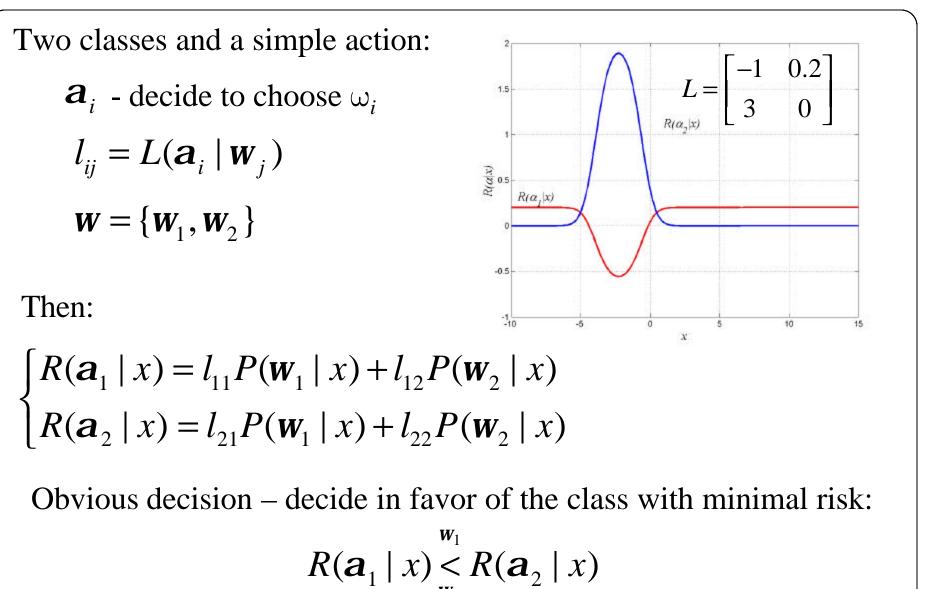
Similarly to the earlier argument about *P*(*error*):

$$\min[R] = \int \min[R(\boldsymbol{a}_i \mid x)] p(x) dx = R^* - Bayes \ risk$$

Quick Summary

 $L(\mathbf{a}_{i} | \mathbf{w}_{j}) - \text{loss}$ $R(\mathbf{a}_{i} | x) = E_{\mathbf{w} | x} \left[L(\mathbf{a}_{i} | \mathbf{w}_{j}) \right] - \text{conditional risk (expected loss)}$ $R = E_{x} \left[R(\mathbf{a}_{i} | x) \right] - \text{total risk (expected cond. risk)}$ $R^{*} = \min \left[R \right] - \text{Bayes risk (minimum risk)}$

Minimum Risk Classification



Rewriting $R(\alpha_i/x)$'s: W_1 $(l_{21} - l_{11})P(\mathbf{w}_1 \mid x) \underset{\mathbf{w}_2}{>} (l_{12} - l_{22})P(\mathbf{w}_2 \mid x) \Rightarrow$ W_1 $(l_{21} - l_{11}) p(x | \mathbf{w}_1) P(\mathbf{w}_1) \geq (l_{12} - l_{22}) p(x | \mathbf{w}_2) P(\mathbf{w}_2) \Rightarrow$ "Class prior" "Class model" $\frac{p(x \mid \mathbf{W}_{1})}{p(x \mid \mathbf{W}_{2})} \stackrel{\mathbf{W}_{1}}{>} \frac{(l_{12} - l_{22})P(\mathbf{W}_{2})}{(l_{21} - l_{11})P(\mathbf{W}_{1})}$ Likelihood Ratio Test

LRT Example

- You are driving to Blockbuster's to return a video due today
- It is 5 min to midnight
- You hit a red light
- You see a car that you 60% sure looks like a police car
- Traffic fine is \$5 AND you are late
- Blockbuster's fine is \$10

Should you run the red light?

Minimum Risk

$$P(police | x) = 0.6 \qquad P(police | x) = 0.4$$
You pay
$$police \quad not \text{ police}$$

$$run \quad \$15 \quad \$0$$

$$run \quad \$10 \quad \$10$$

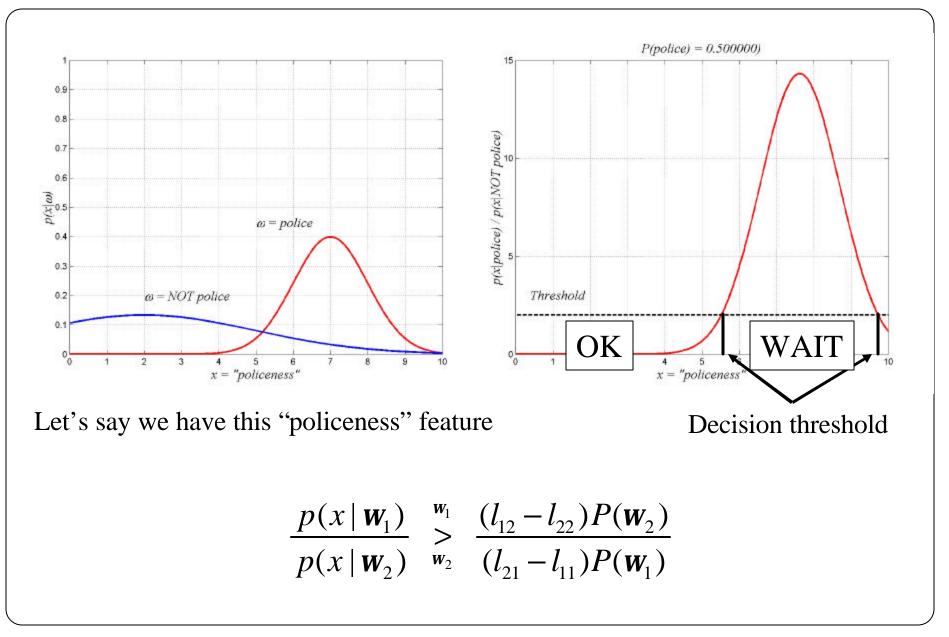
$$L = \begin{pmatrix} 15 & 0 \\ 10 & 10 \end{pmatrix}$$

$$\begin{cases} R(run \mid x) = l_{11}P(police \mid x) + l_{12}P(\overline{police} \mid x) = \$9\\ R(wait \mid x) = l_{21}P(police \mid x) + l_{22}P(\overline{police} \mid x) = \$10 \end{cases}$$

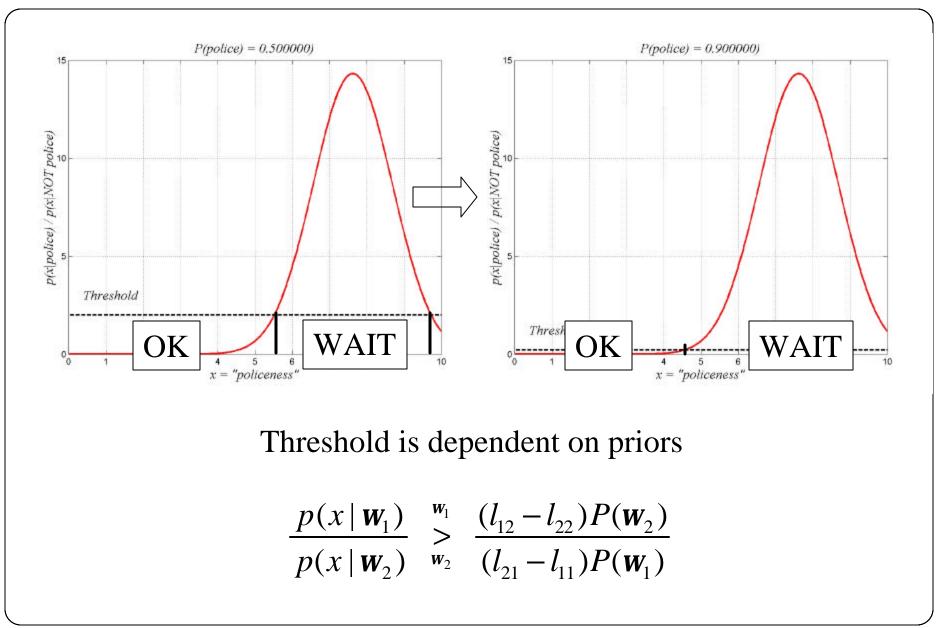
The risk is higher if you wait

-

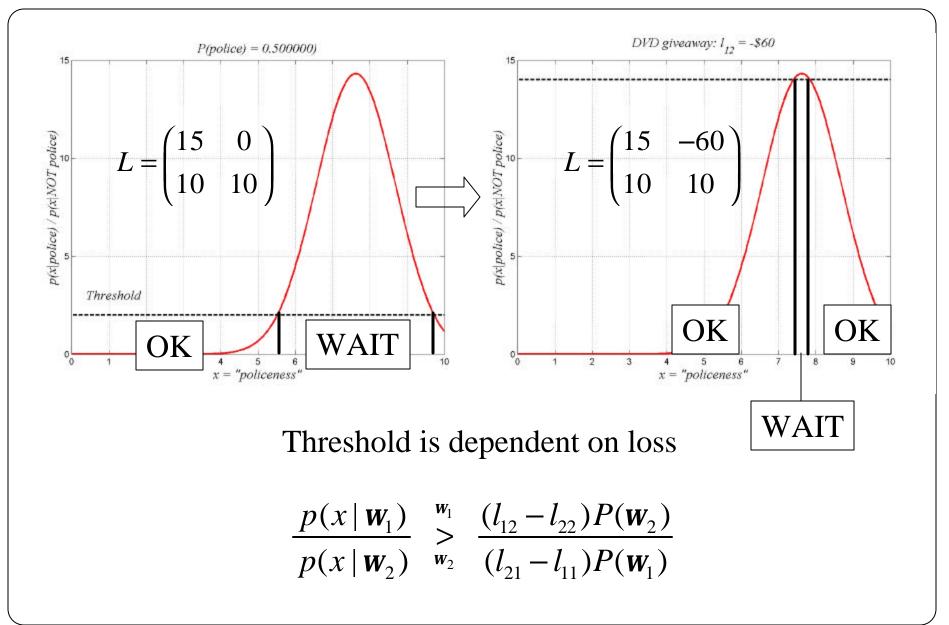
LRT Way



LRT Example



LRT Example



Let's simplify the Min. Risk classification:

$$L = \begin{pmatrix} 0 & 1 & 1 \\ 1 & \ddots & 1 \\ 1 & 1 & 0 \end{pmatrix} - zero-one \text{ loss, just counts errors}$$

Then the conditional risk becomes:

$$R(\boldsymbol{a}_i \mid x) = \sum_{j=1}^{c} L(\boldsymbol{a}_i \mid \boldsymbol{w}_j) P(\boldsymbol{w}_j \mid x)$$
$$= \sum_{\forall i \neq i} P(\boldsymbol{w}_j \mid x) = 1 - P(\boldsymbol{w}_i \mid x)$$

So, ω_i having the highest value of the posterior minimizes the risk:

$$P(\mathbf{w}_i \mid x) \stackrel{\mathbf{w}_i}{>} P(\mathbf{w}_j \mid x) \quad \forall j \neq i$$

- good ol' Bayes decision rule

Is there a decision rule such that the risk is insensitive to priors?

$$R = \int_{R_1} \left[l_{11} P(\mathbf{w}_1 \mid x) + l_{12} P(\mathbf{w}_2 \mid x) \right] dx + \int_{R_2} \left[l_{21} P(\mathbf{w}_1 \mid x) + l_{22} P(\mathbf{w}_2 \mid x) \right] dx$$

After some algebra:

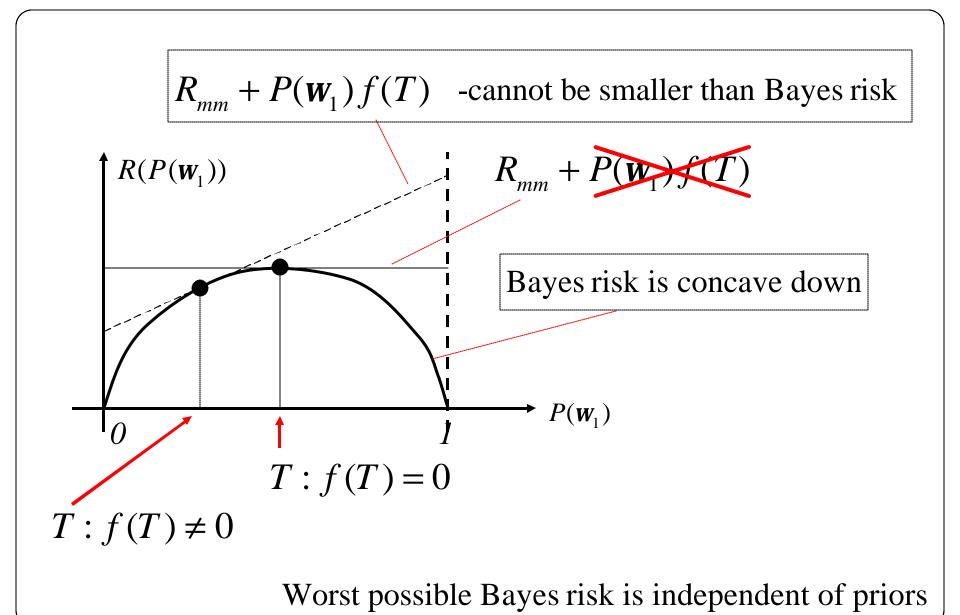
$$R(P(\mathbf{w}_{1})) = \boxed{l_{22} + (l_{12} - l_{22}) \int_{R_{1}} p(x | \mathbf{w}_{2}) dx} + P(\mathbf{w}_{1}) f(T)$$

Minimax risk

Goal – find the decision boundary T, such that f(T) is 0.

At the boundary for which the minimum risk is maximal the risk is independent of priors.

Messy Illustration of the Minimax Solution



Discriminant Functions and Decision Surfaces

Discriminant functions conveniently represent classifiers:

$$C = \{g_1(x), g_2(x), \dots, g_n(x)\}$$

$$\boldsymbol{W}_i: i = \arg \max \left(g_i(x) \right)$$

Eg:
$$g_i(x) = -R(\boldsymbol{a}_i \mid x)$$

$$g_i(x) = P(\mathbf{W}_i \mid x)$$

$$g_i(x) = \ln p(x \mid \mathbf{W}_i) + \ln P(\mathbf{W}_i)$$

Discriminants DO NOT have to relate to probabilities.

For two-class problem:

$$g(x) = g_1(x) - g_2(x)$$

Then (assuming that classes are encoded as -1 and +1):

 $\mathbf{w}_i = sign(g(x))$

Eg:
$$g(x) = P(\mathbf{w}_1 | x) - P(\mathbf{w}_2 | x)$$

 $g(x) = \ln \frac{p(x | \mathbf{w}_1)}{p(x | \mathbf{w}_2)} + \ln \frac{P(\mathbf{w}_1)}{P(\mathbf{w}_2)}$

If we assume a Gaussian for a class model:

$$p(x \mid \mathbf{W}_{i}) = \frac{1}{(2\mathbf{p})^{d/2} \mid \Sigma_{i} \mid^{1/2}} e^{-\frac{1}{2} \left((x - \mathbf{M}_{i})^{T} \Sigma_{i}^{-1} (x - \mathbf{M}_{i}) \right)}$$

... and the minimum error rate classifier:

$$g_i(x) = \ln \left[p(x \mid \mathbf{w}_i) P(\mathbf{w}_i) \right] =$$

= $-\frac{1}{2} \left((x - \mathbf{m}_i)^T \Sigma_i^{-1} (x - \mathbf{m}_i) \right) - \ln \left[(2\mathbf{p})^{d/2} \mid \Sigma_i \mid^{1/2} \right] + \ln P(\mathbf{w}_i)$

Discriminant (after some algebra):

$$g(x) = g_1(x) - g_2(x) == x^T W x + w x + w_0 - quadratic$$

where
$$W = -\frac{1}{2} \left(\Sigma_1^{-1} - \Sigma_2^{-1} \right)$$
 - a matrix
 $w = \Sigma_1^{-1} \boldsymbol{m}_1 - \Sigma_2^{-1} \boldsymbol{m}_2$ - a vector

$$w_o = \dots$$
 well, the rest of it - a scalar

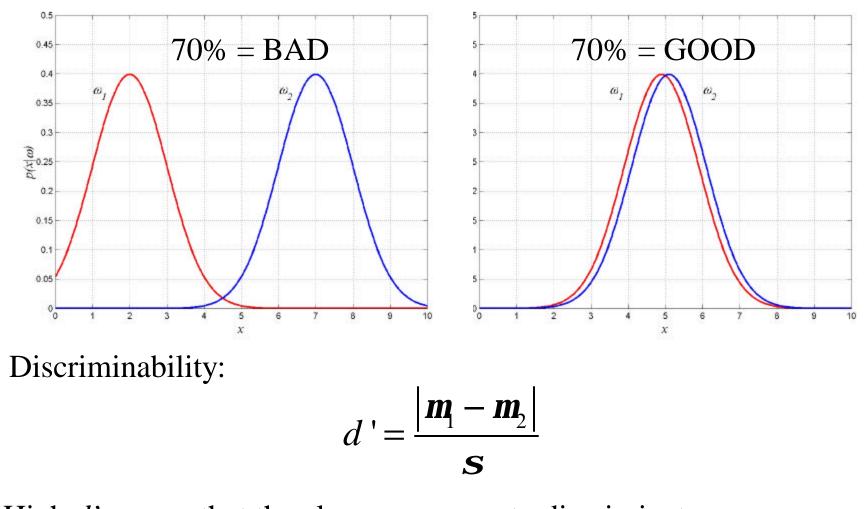
Special cases:

1)
$$\Sigma_1 = \Sigma_2 \implies W = 0 \implies g(x) - linear$$

2) $\Sigma_i = \mathbf{s}_i I \implies W = \left[\frac{1}{2\mathbf{s}_2} - \frac{1}{2\mathbf{s}_1}\right]I = \mathbf{s} I \implies g(x) - a \, circle$

Evaluating Decisions

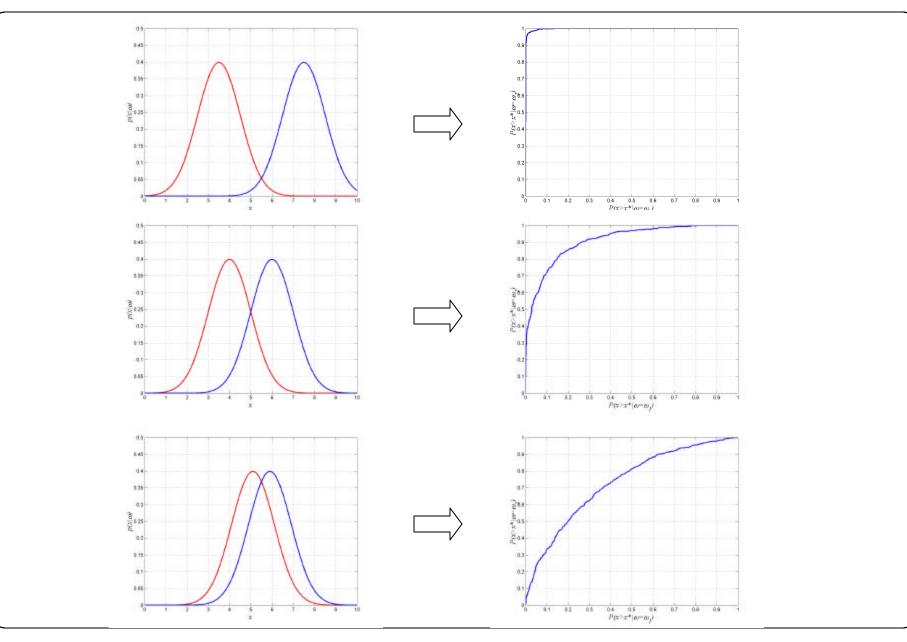
Is 70% classification rate good or bad?



High d' means that the classes are easy to discriminate.

\mathbf{R} We do not know $\boldsymbol{m}, \boldsymbol{m}, \boldsymbol{S}$ 0.45 0.4 0.35 (0) 25 (0) X) but we can get: 0.15 0.05 $P(x > x^* | x \in W_2)$ - probability of hit $P(x > x^* | x \in W_1)$ - probability of false alarm $P(x < x^* | x \in W_2)$ - probability of miss $P(x < x^* | x \in W_1)$ - probability of correct rejection Each x* corresponds to a point on hit/false_alarm plane. This is called an ROC curve

ROC Curve



In practice, it is done for a single parameter

Using the data for which true ω is known:

- Identify a parameter of interest
- Identify the parameter range
- Vary the parameter within the range
- Compute P(hit) and P(false_alarm) empirically for each value

It tells us how well the classifier can deal with the data set.

- A "chance" puzzle
 - Try to solve it
 - Understand the solution
 - Simulate in Matlab
- Build an ROC curve
 - Almost like in class
 - *Can you implement it efficiently?*