Principal Component Analysis \& Independent Component Analysis

Overview

Principal Component Analysis
-Purpose
-Derivation
-Examples
Independent Component Analysis
-Generative Model
-Purpose
-Restrictions
-Computation
-Example
Literature
\mathbf{u}
Vector
U
Matrix

Dot product written as matrix product
Product of a row vector with
scalar as matrix product, and not $a \mathbf{u}$
$\mathbf{u}^{2}=\|\mathbf{u}\|^{2}=\mathbf{u}^{T} \mathbf{u} \quad$ squared norm
Rules for matrix multiplication:
$\mathbf{U V W}=(\mathbf{U V}) \mathbf{W}=\mathbf{U}(\mathbf{V W})$
$(\mathbf{U}+\mathbf{V}) \mathbf{W}=\mathbf{U W}+\mathbf{V} \mathbf{W}$
$(\mathbf{U V})^{T}=\mathbf{V}^{T} \mathbf{U}^{T}$

Principal Component Analysis (PCA)

Purpose

For a set of samples of a random vector $\mathbf{x} \in \mathbf{R}^{N}$, discover or reduce the dimensionality and identify meaningful variables.

$$
\mathbf{y}=\mathbf{U x}, \mathbf{U}: p \times N, p<N
$$

Principal Component Analysis (PCA)

PCA by Variance Maximization

Find the vector \mathbf{u}_{1}, such that the variance of the data along this direction is maximized:
$\sigma_{\mathbf{u}_{1}}^{2}=E\left\{\left(\mathbf{u}_{1}^{T} \mathbf{x}\right)^{2}\right\}, E\{\mathbf{x}\}=0,\left\|\mathbf{u}_{1}\right\|=1$
$\sigma_{\mathbf{u}_{1}}^{2}=E\left\{\left(\mathbf{u}_{1}^{T} \mathbf{x}\right)\left(\mathbf{x}^{T} \mathbf{u}_{1}\right)\right\}=\mathbf{u}_{1}^{T} E\left\{\mathbf{x x}^{T}\right\} \mathbf{u}_{1}$,
$\sigma_{\mathbf{u}_{1}}^{2}=\mathbf{u}_{1}^{T} \mathbf{C} \mathbf{u}_{1}, \quad \mathbf{C}=E\left\{\mathbf{x x}^{T}\right\}$

The solution is the eigenvector \mathbf{e}_{1} of \mathbf{C} with the largest eigenvalue λ_{1}.
$\mathbf{C} \mathbf{e}_{1}=\mathbf{e}_{1} \lambda_{1}, \lambda_{1}=\mathbf{e}_{1}^{T} \mathbf{C} \mathbf{e}_{1} \Leftrightarrow \sigma_{\mathbf{u}_{1}}^{2}=\lambda_{1}$

Principal Component Analysis (PCA)

PCA by Variance Maximization

For a given $p<N$, find p orthonormal basis vectors \mathbf{u}_{i} such that the variance of the data along these vectors is maximally large, under the constraint of decorrelation:
$E\left\{\left(\mathbf{u}_{i}^{T} \mathbf{x}\right)\left(\mathbf{u}_{n}^{T} \mathbf{x}\right)\right\}=0, \quad \mathbf{u}_{i}^{T} \mathbf{u}_{n}=0 \quad n \neq p$
The solution are the eigenvectors of \mathbf{C} ordered according to decreasing eigenvalues λ :
$\mathbf{u}_{1}=\mathbf{e}_{1}, \mathbf{u}_{2}=\mathbf{e}_{2}, \ldots, \mathbf{u}_{p}=\mathbf{e}_{p}, \lambda_{1}>\lambda_{2} \ldots>\lambda_{p}$
Proof of decorrelation for eigenvectors:
$E\left\{\left(\mathbf{e}_{i}^{T} \mathbf{x}\right)\left(\mathbf{e}_{n}^{T} \mathbf{x}\right)\right\}=\mathbf{e}_{i}^{T} E\left\{\mathbf{x x}^{T}\right\} \mathbf{e}_{n}=\mathbf{e}_{i}^{T} \mathbf{C} \mathbf{e}_{n}=\underbrace{\mathbf{e}_{i}^{T} \mathbf{e}_{n}}_{\text {orthogonal }} \lambda_{n}=0$

Principal Component Analysis (PCA)

PCA by Mean Square Error Compression

For a given $p<N$, find p orthonormal basis vectors such that the $m s e$ between \mathbf{x} and its projection $\hat{\mathbf{x}}$ into the subspace spanned by the p orthonormal basis vectors is mimimum:

$$
m s e=E\left\{\|\mathbf{x}-\hat{\mathbf{x}}\|^{2}\right\}, \quad \hat{\mathbf{x}}_{i}=\sum_{k=1}^{p} \mathbf{u}_{k}\left(\mathbf{x}_{k}^{T} \mathbf{u}_{k}\right), \quad \mathbf{u}_{k}^{T} \mathbf{u}_{m}=\delta_{k, m}
$$

Principal Component Analysis (PCA)

$$
\begin{aligned}
m s e & =E\left\{\|\mathbf{x}-\hat{\mathbf{x}}\|^{2}\right\}=E\{\|\mathbf{x}-\sum_{k=1}^{p} \mathbf{u}_{k} \underbrace{\left(\mathbf{x}^{T} \mathbf{u}_{k}\right)}_{\text {scalar }}\|^{2}\} \\
& =E\left\{\|\mathbf{x}\|^{2}\right\}-2 E\left\{\sum_{k=1}^{p} \mathbf{x}^{T} \mathbf{u}_{k}\left(\mathbf{x}^{T} \mathbf{u}_{k}\right)\right\}+E\left\{\sum_{n=1}^{p}\left(\mathbf{x}^{T} \mathbf{u}_{n}\right) \mathbf{u}_{n}^{T} \sum_{k=1}^{p} \mathbf{u}_{k}\left(\mathbf{x}^{T} \mathbf{u}_{k}\right)\right\} \\
& =E\left\{\|\mathbf{x}\|^{2}\right\}-2 E\left\{\sum_{k=1}^{p}\left(\mathbf{x}^{T} \mathbf{u}_{k}\right)^{2}\right\}+E\left\{\sum_{k=1}^{p}\left(\mathbf{x}^{T} \mathbf{u}_{k}\right)^{2}\right\} \\
& =E\left\{\|\mathbf{x}\|^{2}\right\}-E\left\{\sum_{k=1}^{p}\left(\mathbf{x}^{T} \mathbf{u}_{k}\right)^{2}\right\} \\
& =\operatorname{trace}(\mathbf{C})-\sum_{k=1}^{p} \mathbf{u}_{k}^{T} \mathbf{C} \mathbf{u}_{k}, \quad \mathbf{C}=E\left\{\mathbf{x x}^{T}\right\}
\end{aligned}
$$

Principal Component Analysis (PCA)

$$
m s e=\operatorname{trace}(\mathbf{C})-\underbrace{\sum_{k=1}^{P} \mathbf{u}_{k}^{T} \mathbf{C} \mathbf{u}_{k}}_{\text {maximize }}, \quad \mathbf{C}=E\left\{\mathbf{x x}^{T}\right\}
$$

Solution to minimizing mse is any (orthonormal) basis of the subspace spanned by the p first eigenvectors $\mathbf{e}_{1}, \ldots, \mathbf{e}_{p}$ of \mathbf{C}.
$m s e=\operatorname{trace}(\mathbf{C})-\sum_{k=1}^{p} \lambda_{k}=\sum_{k=p+1}^{N} \lambda_{k}$
The $m s e$ is the sum of the eigenvalues corresponding to the discarded eigenvectors $\mathbf{e}_{p+1}, \ldots, \mathbf{e}_{N}$ of $\mathbf{C}: m s e=\sum_{k=p+1}^{N} \lambda_{k}$

Principal Component Analysis (PCA)

How to determine the number of principal components p ?
Linear signal model with unknown number $p<N$ of signals:
$\mathbf{x}=\mathbf{A s}+\mathbf{n}, \quad \mathbf{A}=\left(\begin{array}{lll}a_{1,1} & & a_{1, p} \\ & \ddots & \\ a_{N, 1} & & a_{N, p}\end{array}\right) \quad N \times p$
Signal s_{i} have 0 mean and are uncorrelated, \mathbf{n} is white noise:
$E\left\{\mathbf{s s}^{T}\right\}=\mathbf{I}, E\left\{\mathbf{n m}^{T}\right\}=\sigma_{n}^{2} \mathbf{I}$
$\mathbf{C}=E\left\{\mathbf{x x}^{T}\right\}=E\left\{\mathbf{A s}(\mathbf{A s})^{T}\right\}+E\left\{\mathbf{n} \mathbf{n}^{T}\right\}+\underbrace{E\left\{\mathbf{A s n}^{T}\right\}}_{=0}$
$=\mathbf{A} E\left\{\mathbf{s s}^{T}\right\} \mathbf{A}^{T}+E\left\{\mathbf{n n}^{T}\right\}=\mathbf{A} \mathbf{A}^{T}+\sigma_{n}^{2} \mathbf{I}$
$d_{1}>d_{2}>\ldots>d_{p}>d_{p+1}=d_{p+2}=\ldots=d_{N}=\sigma_{n}^{2}$
\rightarrow cut off when eigenvalues become constants

Principal Component Analysis (PCA)

Computing the PCA

Given a set of samples $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{M}\right\}$ of a random vector \mathbf{x} calculate mean and covariance.
$\tilde{\boldsymbol{\mu}}=\frac{1}{M} \sum_{i=1}^{M} \mathbf{x}_{i}, \quad \mathbf{x} \rightarrow \mathbf{x}-\tilde{\boldsymbol{\mu}}$
$\tilde{\mathbf{C}}=\frac{1}{M} \sum_{i=1}^{M}\left(\mathbf{x}_{i}-\tilde{\boldsymbol{\mu}}\right)\left(\mathbf{x}_{i}-\tilde{\boldsymbol{\mu}}\right)^{T}$
Compute eigenvecotors of $\tilde{\mathbf{C}}$ e.g. with QR algorithm

Principal Component Analysis (PCA)

Computing the PCA

If the number of samples M is smaller than the dimensionality N of \mathbf{x} :
$\mathbf{B}=\left(\begin{array}{lll}x_{1,1} & & x_{1, M} \\ & \ddots & \\ x_{N, 1} & & x_{N, M}\end{array}\right), \tilde{\mathbf{C}}=\mathbf{B B}^{T}, \mathbf{B}: N \times M, \mathbf{B}^{T}: M \times N$
$\mathbf{B B}^{T} \mathbf{e}=\mathbf{e} \lambda$
$\mathbf{B}^{T} \mathbf{B e}^{\prime}=\mathbf{e}^{\prime} \lambda^{\prime}$
$\mathbf{B B}^{T}\left(\mathbf{B e}^{\prime}\right)=\left(\mathbf{B e}^{\prime}\right) \lambda^{\prime} \quad \rightarrow$ Reducing complexity from
$\mathbf{e}=\mathbf{B e}^{\prime}, \lambda^{\prime}=\lambda$
$O\left(N^{2}\right)$ to $O\left(M^{2}\right)$

Principal Component Analysis (PCA)

Examples

Eigenfaces for face recognition (Turk\&Pentland):

Training:
-Calculate the eigenspace for all faces in the training database
-Project each face into the eigenspace \rightarrow feature reduction

Classification:
-Project new face into eigenspace
-Nearest neighbor in the eigenspace

Principal Component Analysis (PCA)
Examples cont.

Feature reduction/extraction

Reconstruction with 20 PC

http://www.nist.gov/

Independent Component Analysis (ICA)

Generative model

Noise free, linear signal model:
$\mathbf{x}=\mathbf{A} \mathbf{s}=\sum_{i=1}^{N} \mathbf{a}_{i} s_{i}$
$\mathbf{x}=\left(x_{1}, \ldots, x_{N}\right)^{T}$ Observed variables
$\mathbf{s}=\left(s_{1}, \ldots, s_{N}\right)^{T}$ latent signals, independent components
$\mathbf{A}=\left(\begin{array}{|cc|}a_{1,1} \\ a_{N, 1} \\ & \\ & a_{1, N} \\ a_{N, N}\end{array}\right)$ unknown mixing matrix, \mathbf{a}_{i}

Independent Component Analysis (ICA)

Task

For the linear, noise free signal model, compute \mathbf{A} and \mathbf{s} given the measurements \mathbf{x}.

Blind source separation :
separate the three original signals s_{1}, s_{2}, and s_{3} from their mixtures x_{1}, x_{2}, and x_{3}.

Independent Component Analysis (ICA)

Restrictions

1.) Statistical independence

The signals s_{i} must be statistically independent:
$p\left(s_{1}, s_{2}, \ldots, s_{N}\right)=p_{1}\left(s_{1}\right) p_{2}\left(s_{2}\right) \ldots p_{N}\left(s_{N}\right)$
Independent variables satisfy:
$E\left\{g_{1}\left(s_{1}\right) g_{2}\left(s_{2}\right) \ldots g_{N}\left(s_{N}\right)\right\}=E\left\{g_{1}\left(s_{1}\right)\right\} E\left\{g_{2}\left(s_{2}\right)\right\} \ldots E\left\{g_{N}\left(s_{N}\right)\right\}$
for any $g_{i}(s) \in L^{1}$
$E\left\{g_{1}\left(s_{1}\right) g_{2}\left(s_{2}\right)\right\}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g_{1}\left(s_{1}\right) g_{2}\left(s_{2}\right) p\left(s_{1}, s_{2}\right) d s_{1} d s_{2}$
$=\int_{-\infty}^{\infty} g_{1}\left(s_{1}\right) p\left(s_{1}\right) d s_{1} \int_{-\infty}^{\infty} g_{2}\left(s_{2}\right) p\left(s_{2}\right) d s_{2}=E\left\{g_{1}\left(s_{1}\right)\right\} E\left\{g_{2}\left(s_{2}\right)\right\}$

Independent Component Analysis (ICA)

Restrictions

Statistical independence cont.

$$
E\left\{g_{1}\left(s_{1}\right) g_{2}\left(s_{2}\right) \ldots g_{N}\left(s_{N}\right)\right\}=E\left\{g_{1}\left(s_{1}\right)\right\} E\left\{g_{2}\left(s_{2}\right)\right\} \ldots E\left\{g_{N}\left(s_{N}\right)\right\}
$$

Independence includes uncorrelatedness:

$$
E\left\{\left(s_{i}-\mu_{i}\right)\left(s_{n}-\mu_{n}\right)\right\}=E\left\{\left(s_{i}-\mu_{i}\right)\right\} E\left\{\left(s_{n}-\mu_{n}\right)\right\}=0
$$

Independent Component Analysis (ICA)

Restrictions

2.) Nongaussian components

The components s_{i} must have a nongaussian distribution otherwise there is no unique solution.
Example:
given \mathbf{A} and two gaussian signals:
$p\left(s_{1}, s_{2}\right)=\frac{1}{2 \pi \sigma_{1} \sigma_{2}} \exp \left(-\frac{s_{1}^{2}}{2 \sigma_{1}^{2}}-\frac{s_{2}^{2}}{2 \sigma_{2}^{2}}\right)$
generate new signals

$\mathbf{s}^{\prime}=\underbrace{\left(\begin{array}{cc}1 / \sigma_{1} & 0 \\ 0 & 1 / \sigma_{2}\end{array}\right)}_{\text {Scaling matrix } \mathbf{S}} \mathbf{s} \Rightarrow p\left(s_{1}^{\prime}, s_{2}^{\prime}\right)=\frac{1}{2 \pi} \exp \left(-\frac{s_{1}^{\prime 2}}{2}\right) \exp \left(-\frac{s_{2}^{\prime 2}}{2}\right)$

Independent Component Analysis (ICA)

Restrictions

Nongaussian components cont.
under rotation the components remain independent:
$\mathbf{s}^{\prime \prime}=\underbrace{\left(\begin{array}{cc}\cos \varphi & \sin \varphi \\ -\sin \varphi & \cos \varphi\end{array}\right)}_{\text {Rotation matrix } \mathbf{R}} \mathbf{s}^{\prime}, p\left(s_{1}^{\prime \prime}, s_{2}^{\prime \prime}\right)=\frac{1}{2 \pi} \exp \left(-\frac{s_{1}^{\prime \prime 2}}{2}\right) \exp \left(-\frac{s_{2}^{\prime \prime 2}}{2}\right)$
combine whitening and rotation $\mathbf{B}=\mathbf{R S}$:
$\mathbf{x}=\mathbf{A s}=\mathbf{A} \mathbf{B}^{-1} \mathbf{s}^{\prime \prime}$
$\mathbf{A B} \mathbf{B}^{-1}$ is also a solution to the ICA problem.

Independent Component Analysis (ICA)

Restrictions

3.) Mixing matrix must be invertible

The number of independent components is equal to the number of observerd variables. Which means that there are no redundant mixtures.

In case mixing matrix is not invertible apply PCA on measurements first to remove redundancy.

Independent Component Analysis (ICA)

Ambiguities

1.) Scale
$\mathbf{x}=\sum_{i=1}^{N} \mathbf{a}_{i} s_{i}=\sum_{i=1}^{N}\left(\frac{1}{\alpha_{i}} \mathbf{a}_{i}\right)\left(\alpha_{i} s_{i}\right)$
Reduce ambiguity by enforcing $E\left\{s_{i}^{2}\right\}=1$
2.) Order

We cannot determine an order of the independant components

Independent Component Analysis (ICA)

Computing ICA

a) Minimizing mutual information:
$\hat{\mathbf{s}}=\hat{\mathbf{A}}^{-1} \mathbf{x}$
Mutual information: $I(\hat{\mathbf{s}})=\sum_{i=1}^{N} H\left(\hat{s}_{i}\right)-H(\hat{\mathbf{s}})$
H is the differential etnropy:
$H(\hat{\mathbf{s}})=-\int p(\hat{\mathbf{s}}) \log _{2}(p(\hat{\mathbf{s}})) d \hat{\mathbf{s}}$
I is always nonnegative and 0 only if the \hat{s}_{i} are independent.
Iteratively modify $\hat{\mathbf{A}}^{-1}$ such that $I(\hat{\mathbf{s}})$ is minimized.

Independent Component Analysis (ICA)

Computing ICA cont.

b) Maximizing Nongaussianity
$\mathbf{s}=\mathbf{A}^{-1} \mathbf{x}$
introduce y and \mathbf{b} : $y=\mathbf{b}^{T} \mathbf{x}=\mathbf{b}^{T} \mathbf{A s}=\mathbf{q}^{T} \mathbf{s}$
From central limit theorem:
$y=\mathbf{q}^{T} \mathbf{s}$ is more gaussian than any of the s_{i} and becomes
least gaussian if $y=s_{i}$.
Iteratively modify \mathbf{b}^{T} such that the "gaussianity"
of y is minimized. When a local minimum is reached,
\mathbf{b}^{T} is a row vector of \mathbf{A}^{-1}.

PCA Applied to Faces

Each pixel is a feature, each face image a point in the feature space. Dimension of feature vector is given by the size of the image.
\mathbf{u}_{i} are the eigenvectors which can be represented as pixel images in the original cooridinate system $x_{1} \ldots x_{N}$

ICA Applied to Faces

Now each image corresponds to a particular observed variable measured over time (M samples). N is the number of images.
$\mathbf{x}=\mathbf{A s}=\sum_{i=1}^{N} \mathbf{a}_{i} s_{i}$
$\mathbf{x}=\left(x_{1}, \ldots, x_{N}\right)^{T}$ Observed variables
$\mathbf{s}=\left(s_{1}, \ldots, s_{N}\right)^{T}$ latent signals, independent components

PCA and ICA for Faces

Features for face recognition

Image removed due to copyright considerations. See Figure 1 in: Baek, Kyungim et. al. "PCA vs. ICA: A comparison on the FERET data set." International Conference of Computer Vision, Pattern Recognition, and Image Processing, in conjunction with the 6th JCIS. Durham, NC, March 8-14 2002, June 2001.

