9.913 Pattern Recognition for Vision
 Class VII, Part I - Techniques for Clustering Yuri Ivanov

TOC

- Similarity metric
- K-means and IsoData algorithms
- EM algorithm
- Some hierarchical clustering schemes

Clustering

- Clustering is a process of partitioning the data into groups based on similarity
- Clusters are groups of measurements that are similar
- In Classification groups of similar data form classes
- Labels are given
- Similarity is deduced from labels
- In Clustering groups of similar data form clusters
- Similarity measure is given
- Labels are deduced from similarity

Clustering

Questions

- What is "similar"?
- What is a "good" partitioning?

Distances

Most obvious: distance between samples

- Compute distances between the samples
- Compare distances to a threshold

We need a metric to define distances and thresholds

- We can choose it from a family:

$$
\begin{aligned}
d\left(x, x^{\prime}\right)= & \left(\sum_{k=1}^{d}\left|x_{k}-x_{k}^{\prime}\right|^{q}\right)^{1 / q} \quad \text { - Minkowski metric } \\
q=1 & \Rightarrow \text { Manhattan/city block/taxicab distance } \\
q=2 & \Rightarrow \text { Euclidean distance }
\end{aligned}
$$

$d\left(x, x^{\prime}\right)$ is invariant to rotation and translation only for $q=2$

Minkovski Metrics

Points a distance 1 from origin

Metric and Invariance

Other choices for invariant metric:

- We can use data-driven metric:

$$
d\left(x, x^{\prime}\right)=\sqrt{\left(x-x^{\prime}\right)^{T} \Sigma^{-1}\left(x-x^{\prime}\right)} \quad \text { - Mahalanobis distance }
$$

- We can normalize data (whiten)

$$
x^{\prime}=\left(\Lambda^{-1 / 2} \Phi^{T}\right) x
$$

And then use the Euclidean metric

Metric

Euclidean metric

- Good for isotropic spaces
- Bad for linear transformations (except rotation and translation)

Mahalanobis metric:

- Good if there is enough data

Whitening:

- Good if the spread is due to random processes
- Bad if it is due to subclasses

Similarity

We need a symmetric function that is large for "similar" x
E.g.:

$$
s\left(x, x^{\prime}\right)=\frac{x^{t} x^{\prime}}{\left\|x^{t}\right\|\left\|x^{\prime}\right\|}
$$

- "angular" similarity

Vocabulary:
\{Two, three, little, star, monkeys, jumping, twinke, bed \}
a) Three little monkeys jumping on the bed
$(0,1,1,0,1,1,0,1)$
b) Two little monkeys jumping on the bed
$(1,0,1,0,1,1,0,1)$
c) Twinkle twinkle little star
$(0,0,1,1,0,0,2,0)$

Similarity matrix:

	c	b	c
	1.0	0.8	0.18
b	0.8	1.0	0.18
c	0.18	0.18	1.0

Similarity

It doesn't have to be metric:

$$
\begin{aligned}
& \text { E.g.: } \\
& s\left(x, x^{\prime}\right)=\frac{x^{t} x^{\prime}}{d} \\
& s\left(x, x^{\prime}\right)=\frac{x^{t} x^{\prime}}{x^{t} x+x^{\prime t} x^{\prime}-x^{t} x^{\prime}} \\
& \text { Tanimoto coefficient }
\end{aligned}
$$

Partitioning Evaluation

J - objective function, s.t. clustering is assumed optimal when J is minimized or maximized

$$
J=\sum_{k=1}^{K} \sum_{n=1}^{N_{k}}\left\|x_{n}^{(k)}-\mu_{k}\right\|^{2} \quad-\text { Sum of squared error criterion (min) }
$$

Using the definition of the mean:

$$
J=\frac{1}{2} \sum_{k=1}^{K} N_{k}\left[\frac{1}{N_{k}^{2}} \sum_{n=1}^{N_{k}} \sum_{m=1}^{N_{k}}\left\|x_{n}^{(k)}-x_{m}^{(k)}\right\|^{2}\right]
$$

Dissimilarity measure You can replace it with your favorite

Other possibilities:

For within- and between- cluster scatter matrices (recall LDA)

$$
\begin{aligned}
& J=\left|S_{W}\right|=\left|\sum_{k=1}^{K} S_{k}\right| \quad-\text { Scatter determinant criterion (min) } \\
& J=\operatorname{tr}\left|S_{W}^{-1} S_{B}\right|=\sum_{i=1}^{d} \lambda_{i} \quad \text { - Scatter ratio criterion (max) }
\end{aligned}
$$

Careful with the ranks!

Which to choose?

- No methodological answer
- SSE criterion (minimum variance)
- simple
- good for well separated clusters in dense groups
- affected by outliers, scale variant
- Scatter criteria
- Invariant to general linear transformations
- Poor on small amounts of data as related to dimensionality
- You should chose the metric and the objective that are invariant to the transformations natural to your problem

Clustering

\boldsymbol{x} - input data
K - number of clusters (assumed known)
N_{k} - number points in cluster k
N - total number of data points
\boldsymbol{t}_{k} - prototype (template) vector of k-th cluster
J - objective function, s.t. clustering is assumed optimal when J is extremized

General Procedure

Clustering is usually an iterative procedure:

- Choose initial configuration
- Adjust configuration s.t. J is optimized
- Check for convergence
J is often only partially minimized.

Clustering - A Good Start

Let's choose the following model:

- Known number of clusters
- Each cluster is represented by a single prototype
- Similarity is defined in the nearest neighbor sense

Sum-Squared-Error objective:

$$
J=\sum_{k=1}^{K} \sum_{n=1}^{N_{k}}\left\|x_{n}^{(k)}-t_{k}\right\|^{2} \quad \text { - total in-cluster distance for all clusters }
$$

$$
\frac{d J}{d t_{k}}=\sum_{c=1}^{K} \sum_{n=1}^{N_{k}} \frac{d}{d t_{k}}\left(\left\|x_{n}^{(k)}-t_{k}\right\|^{2}\right)=-2 \sum_{n=1}^{N_{k}}\left(x_{n}^{(k)}-t_{k}\right)=0 \Rightarrow
$$

$$
t_{k}=\frac{1}{N_{k}} \sum_{n=1}^{N_{k}} x_{n}^{(k)}
$$

K-Means Algorithm

Using the iterative procedure:

1. Choose M random positions for the prototypes
2. Classify all samples by the nearest \boldsymbol{t}_{k}
3. Compute new prototype positions
4. If not converged (no cluster assignments changed from previous iteration), go to step 2

This is the K-Means (a.k.a. Lloyd's, a.k.a. LBG) algorithm.

What to do with empty clusters? Some heuristics are involved.

K-Means Algorithm Example

$$
K=10
$$

Cluster Heuristics

Sometimes clusters end up empty. We can:

- Remove them
- Randomly reinitialize them
- Split the largest ones

Sometimes we have too many clusters. We can:

- Remove the smallest ones
- Relocate the smallest ones
- Merge the smallest ones together if they are neighbors

IsoData Algorithm

In K-Means we assume that we know the number of clusters

IsoData tries to estimate them - ultimate K-Means hack

IsoData iterates between 3 stages:

- Center estimation
- Cluster splitting
- Cluster merging

The user specifies:
T - min number of samples in a cluster
$N_{D}-\underline{\text { desired }}$ number of clusters $\quad D_{m}-\max$ distance for merging
$\sigma_{S}{ }^{2}$ - maximum cluster variance $\quad N_{\max }$ - max number of merges

IsoData

Stage I - Cluster assignment:

1. Assign a label to each data point such that:

$$
\omega^{n}=\underset{j}{\arg \min }\left\|x^{n}-t_{j}\right\|
$$

2. Discard clusters with $N_{k}<T$, reduce N_{c}
3. Update means of remaining clusters:

$$
t_{j}=\frac{1}{N_{j}} \sum_{i=1}^{N_{j}} x_{i}^{(j)}
$$

This is basically a step of K-Means algorithm

IsoData

Stage II - Cluster splitting:

1. If this is the last iteration, set $D_{m}=0$ and go to Stage III
2. If $N_{c}<=N_{D} / 2$, go to splitting (step 4)
3. If iteration is even or if $N_{c}>=2 N_{D}$ go to Stage III
4. Compute:

$$
d_{k}=\frac{1}{N_{k}} \sum_{i=1}^{N_{k}}\left\|x_{i}^{(k)}-t_{k}\right\| \quad \text { - avg. distance from the center }
$$

$$
\sigma_{k}^{2}=\max _{j} \frac{1}{N_{k}} \sum_{i=1}^{N_{k}}\left(x_{i, j}^{(k)}-t_{k, j}\right)^{2}-\underset{\substack{\text { dimension }}}{\text { variance along a single }}
$$

$$
d=\frac{1}{N} \sum_{k=1}^{N_{c}} N_{k} d_{k} \quad \text { - overall avg. distance from centers }
$$

IsoData

Stage II - Cluster splitting (cont.):

5. For clusters with $\sigma_{k}{ }^{2}>\sigma_{S}{ }^{2}$:

If $\left(d_{k}>d\right.$ AND $\left.N_{k}>2(T+1)\right)$ OR $N_{c}<N_{D} / 2$

Split the cluster by creating a new mean:

$$
t_{k, j}^{\prime}=t_{k, j}+0.5 \sigma_{k}^{2}
$$

And moving the old one to:

$$
t_{k, j}=t_{k, j}-0.5 \sigma_{k}^{2}
$$

IsoData

Stage III - Cluster merging:

If no split has been made:

1. Compute the matrix of distances between cluster centers

$$
D_{i, j}=\left\|t_{i}-t_{j}\right\|
$$

2. Make the list of pairs where $D_{i, j}<D_{m}$
3. Sort them in ascending order
4. Merge up to $N_{\max }$ unique pairs starting from the top by removing t_{j} and replacing t_{i} with:

$$
t_{i}=\frac{1}{N_{i}+N_{j}}\left(N_{i} t_{i}+N_{j} t_{j}\right)
$$

IsoData Example

$$
\begin{array}{ll}
N_{D} & =10 \\
T & =10 \\
\sigma_{S}^{2} & =3 \\
D_{m} & =2 \\
N_{\max } & =3
\end{array}
$$

Mixture Density Model

Mixture model - a linear combination of parametric densities

$$
\begin{gathered}
\text { Number of components } \\
p(x)=\sum_{j=1}^{M} p(x \mid j) P(j) \\
P(j) \geq 0, \quad \forall j \quad \text { and } \quad \sum_{j=1}^{M} P(j)=1
\end{gathered}
$$

Recall Kernel density estimation
Kernels are parametric densities, subject to estimation

Example

Using ML principle, the objective function is the log-likelihood:

$$
l(\theta) \equiv \ln \left\{\prod_{n=1}^{N} p\left(x^{n}\right)\right\}=\sum_{n=1}^{N} \ln \left\{\sum_{j=1}^{M} p\left(x^{n} \mid j\right) P(j)\right\}
$$

Diffirentiate w.r.t. parameters:

$$
\nabla_{\theta_{j}} l(\theta)=\sum_{n=1}^{N} \frac{\partial}{\partial \theta_{j}} \ln \left\{\sum_{k=1}^{M} p\left(x^{n} \mid k\right) P(k)\right\}
$$

$$
=\sum_{n=1}^{N} \frac{1}{\sum_{k=1}^{M} p\left(x^{n} \mid k\right) P(k)} \frac{\partial}{\partial \theta_{j}} p\left(x^{n} \mid j\right) P(j)
$$

Here because of the log

Mixture Density

For distributions $p(x \mid j)$ in the exponential family:

$$
\begin{gathered}
\frac{\partial}{\partial \theta}\left[A(\theta) e^{B(\theta, x)}\right]=A(\theta) e^{B(\theta, x)} \frac{\partial}{\partial \theta}[B(\theta, x)]+\frac{\partial}{\partial \theta}[A(\theta)] e^{B(\theta, x)} \\
\Rightarrow \frac{\partial l(\theta)}{\partial \theta}=\sum_{n=1}^{N} P\left(j \mid x^{n}\right) \times(\text { Stuff }+ \text { More Stuff })
\end{gathered}
$$

For a Gaussian:

$$
\begin{aligned}
& \frac{\partial l(\theta)}{\partial \mu_{j}}=\sum_{n=1}^{N} P\left(j \mid x^{n}\right)\left[\Sigma_{j}^{-1}\left(x^{n}-\hat{\mu}_{j}\right)\right] \\
& \frac{\partial l(\theta)}{\partial \hat{\mathbf{S}}_{j}}=\sum_{n=1}^{N} P\left(j \mid x^{n}\right)\left[\hat{\mathbf{S}}_{j}^{-1}-\hat{\mathbf{S}}_{j}^{-1}\left(x^{n}-\hat{\mu}_{j}\right)\left(x^{n}-\hat{\mu}_{j}\right)^{T} \hat{\mathbf{S}}_{j}^{-1}\right]
\end{aligned}
$$

Mixture Density

At the extremum of the objective:

$$
\begin{aligned}
& \text { e extremum of the objective: } \\
& P(j)=\frac{1}{N} \sum_{n=1}^{N} P\left(j \mid x^{n}\right) \quad \hat{\mu}_{j}=\frac{\sum_{n=1}^{N} P\left(j \mid x^{n}\right) x^{n}}{\sum_{n=1}^{N} P\left(j \mid x^{n}\right)} \\
& \hat{\mathbf{S}}_{j}=\frac{\sum_{n=1}^{N} P\left(j \mid x^{n}\right)\left(x^{n}-\hat{\mu}_{j}\right)\left(x^{n}-\hat{\mu}_{j}\right)^{T}}{\sum_{n=1}^{N} P\left(j \mid x^{n}\right)}
\end{aligned}
$$

BUT:

$$
P\left(j \mid x^{n}\right)=\frac{p\left(x^{n} \mid j\right) P(j)}{\sum_{k=1}^{M} p\left(x^{n} \mid k\right) P(k)}
$$

- parameters are tied

Solution - EM algorithm.

Suppose we pick an initial configuration (just like in K-Means)

Recall the objective (change of sign):

$$
E \equiv-l(\theta)=-\ln \left\{\prod_{n=1}^{N} p\left(x^{n}\right)\right\}=-\sum_{n=1}^{N} \ln \left\{p\left(x^{n}\right)\right\}
$$

After a single step of optimization:

$$
\begin{aligned}
& E^{\text {new }}-E^{o l d}=-\sum_{n=1}^{N} \ln \left\{\frac{p^{\text {new }}\left(x^{n}\right)}{p^{\text {old }}\left(x^{n}\right)}\right\} \\
&=-\sum_{n=1}^{N} \ln \left\{\sum_{j=1}^{M} \frac{P^{\text {new }}(j) p^{\text {new }}\left(x^{n} \mid j\right)}{p^{\text {old }}\left(x^{n}\right)}\right\}
\end{aligned}
$$

EM Algorithm

After optimization step:

$$
\begin{aligned}
& \begin{aligned}
E^{\text {new }}- & E^{\text {old }}
\end{aligned}=-\sum_{n=1}^{N} \ln \left\{\sum_{j=1}^{M} \frac{P^{\text {new }}(j) p^{\text {new }}\left(x^{n} \mid j\right)}{p^{\text {old }}\left(x^{n}\right)}\right\} \\
&=-\sum_{n=1}^{N} \ln \left\{\sum_{j=1}^{M}\left[\frac{P^{\text {new }}(j) p^{\text {new }}\left(x^{n} \mid j\right)}{p^{\text {old }}\left(x^{n}\right)} \frac{P^{\text {old }}\left(j \mid x^{n}\right)}{P^{\text {old }}\left(j \mid x^{n}\right)}\right]\right\} \\
&=-\sum_{n=1}^{N} \ln \left\{\sum_{j=1}^{M}\left[P^{\text {old }}\left(j \mid x^{n}\right) \frac{P^{\text {new }}(j) p^{\text {new }}\left(x^{n} \mid j\right)}{p^{\text {old }}\left(x^{n}\right) P^{\text {old }}\left(j \mid x^{n}\right)}\right]\right\} \\
& \text { Sums to 1 over } j \ln \left\{\sum_{j=1}^{M} \lambda_{j} y_{j}\right\}
\end{aligned}
$$

Digression-Convexity

Definition: Function f is convex on $[a, b]$ iff for any x_{1}, x_{2} in $[a, b]$ and any λ in $[0,1]$:

$$
f\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \leq \lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right)
$$

Digression - Jensen's Inequality

If f is a convex function:

$$
\begin{aligned}
& f\left(\sum_{j=1}^{M} \lambda_{j} x_{j}\right) \leq \sum_{j=1}^{M} \lambda_{j} f\left(x_{j}\right) \\
& \forall \lambda: 0 \leq \lambda_{j} \leq 1, \quad \sum_{j} \lambda_{j}=1
\end{aligned}
$$

Equivalently:

$$
f(E[x]) \leq E[f(x)]
$$

Or:

$$
f\left(\frac{1}{M} \sum_{j=1}^{M} x_{j}\right) \leq \frac{1}{M} \sum_{j=1}^{M} f\left(x_{j}\right)
$$

Flip the inequality if f is concave

Digression - Jensen's Inequality

Proof by induction:
a) $J E$ is trivially true for any 2 points (definition of convexity)
b) Assuming it is true for any $k-1$ points:
for $\lambda_{i}^{*} \triangleq \lambda_{i} /\left(1-\lambda_{k}\right)$
$\sum_{i=1}^{k} \lambda_{i} f\left(x_{i}\right)=\lambda_{k} f\left(x_{k}\right)+\left(1-\lambda_{k}\right) \sum_{i=1}^{k-1} \lambda_{i}^{*} f\left(x_{i}\right)$

$$
\begin{aligned}
& \geq \lambda_{k} f\left(x_{k}\right)+\left(1-\lambda_{k}\right) f\left(\sum_{i=1}^{k-1} \lambda_{i}^{*} x_{i}\right) \\
& \geq f\left(\lambda_{k} x_{k}+\left(1-\lambda_{k}\right) \sum_{i=1}^{k-1} \lambda_{i}^{*} x_{i}\right)=f\left(\sum_{i=1}^{k} \lambda_{i} x_{i}\right)
\end{aligned}
$$

End of digression

Back to EM

Change in the error:

$$
\begin{aligned}
& E^{\text {new }}-E^{\text {old }}= \\
&=-\sum_{n=1}^{N} \overbrace{\left\{\begin{array}{l}
\sum_{j=1}^{M}\left[\frac{P^{\text {old }}\left(j \mid x^{n}\right)}{\ln } \frac{P^{\text {new }}(j) p^{\text {new }}\left(x^{n} \mid j\right)}{p^{\text {old }}\left(x^{n}\right) P^{\text {old }}\left(j \mid x^{n}\right)}\right]
\end{array}\right]}
\end{aligned}
$$

by Jensen's inequality:

$$
\leq-\sum_{n=1}^{N} \sum_{j=1}^{M} P^{\text {old }}\left(j \mid x^{n}\right) \ln \left\{\frac{P^{\text {new }}(j) p^{\text {new }}\left(x^{n} \mid j\right)}{p^{\text {old }}\left(x^{n}\right) P^{\text {old }}\left(j \mid x^{n}\right)}\right\}
$$

Back to EM

Change in the error:

$$
\begin{aligned}
& E^{\text {new }}-E^{\text {old }}= \\
& \\
& =-\sum_{n=1}^{N} \overbrace{\left\{\begin{array}{l}
\sum_{j=1}^{M}\left[\frac{P^{\text {old }}\left(j \mid x^{n}\right)}{\ln } \frac{P^{\text {new }}(j) p^{\text {new }}\left(x^{n} \mid j\right)}{p^{\text {old }}\left(x^{n}\right) P^{\text {old }}\left(j \mid x^{n}\right)}\right]
\end{array}\right\}}^{\lambda}
\end{aligned}
$$

by Jensen's inequality:

$$
\begin{gathered}
\leq-\sum_{n=1}^{N} \sum_{j=1}^{M} P^{\text {old }}\left(j \mid x^{n}\right) \ln \left\{\frac{P^{n e w}(j) p^{n e w}\left(x^{n} \mid j\right)}{p^{\text {old }}\left(x^{n}\right) P^{\text {old }}\left(j \mid x^{n}\right)}\right\} \\
\text { call this " } Q \text { " }
\end{gathered}
$$

EM as Upper Bound Minimization
Then: $\quad E^{\text {new }} \leq E^{\text {old }}+Q \quad$ - upper bound on $E^{\text {new }}\left(\theta{ }^{\text {new }}\right)$
Some observations:

- Q is convex
- Q is a function of new parameters θ new
- So is $E^{n e w}$
- If θ new $=\theta$ old then $E^{\text {new }}=E^{\text {old }}+Q$

EM Iteration

EM (cont.)

$$
\begin{aligned}
& Q=-\sum_{n=1}^{N} \sum_{j=1}^{M} P^{\text {old }}\left(j \mid x^{n}\right) \ln \left\{\frac{P^{\text {new }}(j) p^{\text {new }}\left(x^{n} \mid j\right)}{\left.\frac{p^{\text {old }}\left(x^{n}\right) P^{\text {old }}\left(j \mid x^{n}\right)}{n}\right\}}\right. \\
& \tilde{\text { Can drop these }}
\end{aligned}
$$

for a Gaussian mixture:

$$
=-\sum_{n=1}^{N} \sum_{j=1}^{M} P^{o l d}\left(j \mid x^{n}\right)\left\{\ln P^{\text {new }}(j)-\ln \left(G_{j}\left(x^{n}\right)\right)\right\}
$$

As before - differentiate, set to 0 , solve for parameter.

EM (cont.)

Straight-forward for means and covariances:

$$
\hat{\mu}_{j}=\frac{\sum_{n=1}^{N} P^{o l d}\left(j \mid x^{n}\right) x^{n}}{\sum_{n=1}^{N} P^{o l d}\left(j \mid x^{n}\right)}
$$

- convex sum, weighted w.r.t. previous estimate

$$
\hat{\mathbf{S}}_{j}=\frac{\sum_{n=1}^{N} P^{o l d}\left(j \mid x^{n}\right)\left(x^{n}-\hat{\mu}_{j}\right)\left(x^{n}-\hat{\mu}_{j}\right)^{T}}{\sum_{n=1}^{N} P^{\text {old }}\left(j \mid x^{n}\right)}
$$

- convex sum, weighted w.r.t. previous estimate

EM (cont.)

Need to enforce sum-to-one constraint for $P(j)$:

$$
\begin{aligned}
& J_{P}=\tilde{Q}+\lambda\left(\sum_{j=1}^{M} P^{n e w}(j)-1\right) \\
& \frac{\partial}{\partial P^{n e w}(j)} J_{P}=-\sum_{n=1}^{N} \frac{P^{\text {old }}\left(j \mid x^{n}\right)}{P^{n e w}(j)}+\lambda=0 \\
& \Rightarrow \lambda P^{n e w}(j)=\sum_{n=1}^{N} P^{o l d}\left(j \mid x^{n}\right) \\
& \Rightarrow \lambda \sum_{j=1}^{M} P^{n e w}(j)=\sum_{n=1}^{N} \sum_{j=1}^{M} P^{o l d}\left(j \mid x^{n}\right) \\
& \Rightarrow \lambda=N \quad \Rightarrow P^{\text {new }}(j)=\frac{1}{N} \sum_{n=1}^{N} P^{o l d}\left(j \mid x^{n}\right)
\end{aligned}
$$

EM Example

EM Illustration

You can manipulate $P(j \mid x)$.
Eg: Partially labeled data
$P(j \mid x)$ tells how much the data point affects each cluster, unlike in Kmeans.

EM vs K-Means

Furthermore, $P(j \mid x)$ can be replaced with:

$$
\begin{gathered}
\tilde{P}(j \mid x)=\left.\frac{P(j \mid x) e^{\gamma P(j \mid x)}}{\sum_{k} P(k \mid x) e^{\gamma P(k \mid x)}}\right|_{\gamma=0} \\
\text { if } \gamma=0, \quad \tilde{P}(j \mid x)=P(j \mid x)
\end{gathered}
$$

Now let's relax γ :
$\lim _{\gamma \rightarrow \infty} \tilde{P}(j \mid x)=\delta(P(j \mid x), \max P(j \mid x))$ $\gamma \rightarrow \infty$

This is K-Means!!!

Ex: Dendrogram

There are 2 ways to do it:

- Agglomerative (bottom-up)
- Divisive (top-down)

Different thresholds induce different cluster configurations.

Stopping criterion - either a number of clusters, or a distance threshold

Hierarchical Agglomerative Clustering

General structure:

Initialize: $K, \hat{K} \leftarrow N, D_{n} \leftarrow x_{n}, n=1 . . N$

$$
\begin{array}{ll}
\text { do } \quad & \hat{K} \leftarrow \hat{K}-1 \\
& i, j=\underset{l, m}{\operatorname{argmin}} d\left(D_{l}, D_{m}\right) \\
& \operatorname{merge}\left(D_{i}, D_{j}\right) \\
\text { until } & \hat{K}=K
\end{array}
$$

Need to specify

Ex

$$
\left.\begin{array}{l}
d=d_{\text {mean }}\left(D_{i}, D_{j}\right)=\left\|\mu_{i}-\mu_{j}\right\| \\
d=d_{\min }\left(D_{i}, D_{j}\right)=\min _{x_{1} \in D_{i}, x_{2} D_{j}}\left\|x_{1}-x_{2}\right\| \\
d=d_{\max }\left(D_{i}, D_{j}\right)=\max _{x_{1} \in D_{i}, x_{2} \in D_{j}}\left\|x_{1}-x_{2}\right\|
\end{array}\right\}
$$

Each induces different algorithm

Single Linkage Algorithm

Choosing $d=d_{\text {min }}$ results in a Nearest Neighbor Algorithm (a.k.a single linkage algorithm, a.k.a. minimum algorithm)

$$
N=2
$$

Each cluster is a minimal spanning tree of the data in the cluster.
Identifies clusters that are well separated

Complete Linkage Algorithm

Choosing $d=d_{\text {max }}$ results in a Farthest Neighbor Algorithm (a.k.a. complete linkage algorithm, a.k.a. maximum algorithm)

$$
N=2
$$

Each cluster is a complete subgraph of the data.
Identifies clusters that are well localized

Summary

- General concerns about choice of similarity metric
- K-means algorithm - simple but relies on Euclidean distances
- IsoData - old-school step towards model selection
- EM - "statistician's K-means" - simple, general and convenient
- Some hierarchical clustering schemes

