9.913 Pattern Recognition for Vision Class VII, Part I – Techniques for Clustering Yuri Ivanov

- Similarity metric
- K-means and IsoData algorithms
- EM algorithm
- Some hierarchical clustering schemes

- Clustering is a process of partitioning the data into groups based on similarity
- Clusters are groups of measurements that are *similar*
- In *Classification* groups of similar data form classes
 - Labels are given
 - Similarity is deduced from labels
- In Clustering groups of similar data form clusters
 - Similarity measure is given
 - Labels are deduced from similarity

- What is "similar"?
- What is a "good" partitioning?

Distances

Most obvious: distance between samples

- Compute distances between the samples
- Compare distances to a threshold

We need a metric to define distances and thresholds

• We can choose it from a family:

$$d(x, x') = \left(\sum_{k=1}^{d} |x_k - x'_k|^q\right)^{1/q} - \text{Minkowski metric}$$

 $q = 1 \implies$ Manhattan/city block/taxicab distance $q = 2 \implies$ Euclidean distance

d(x, x') is invariant to rotation and translation only for q = 2

Minkovski Metrics

Other choices for invariant metric:

• We can use data-driven metric:

$$d(x, x') = \sqrt{(x-x')^T \Sigma^{-1} (x-x')}$$
 - Mahalanobis distance

• We can normalize data (whiten)

$$x' = \left(\Lambda^{-1/2} \Phi^T\right) x$$

And then use the Euclidean metric

Metric

Euclidean metric

- Good for isotropic spaces
- Bad for linear transformations (except rotation and translation)

Mahalanobis metric:

• Good if there is enough data

Whitening:

- Good if the spread is due to random processes
- Bad if it is due to subclasses

Similarity

We need a symmetric function that is large for "similar" *x*

E.g.:
$$s(x, x') = \frac{x^t x'}{\|x^t\| \|x'\|}$$
 - "angular" similarity

Vocabulary:

{*Two, three, little, star, monkeys, jumping, twinke, bed* }

a) *Three little monkeys jumping on the bed* (0, 1, 1, 0, 1, 1, 0, 1)
b) *Two little monkeys jumping on the bed* (1, 0, 1, 0, 1, 1, 0, 1)
c) *Twinkle twinkle little star* (0, 0, 1, 1, 0, 0, 2, 0)

Similarity

It doesn't have to be metric:

E.g.:

	Has fur	Has 4 legs	Can type
Monkey	1	0	1
Platypus	1	1	0

$$s(x,x') = \frac{x^t x'}{d}$$

.67	.33	
.33	.67	

.33

1

.33

Tanimoto coefficient

J – objective function, s.t. clustering is assumed optimal when J is minimized or maximized

$$J = \sum_{k=1}^{K} \sum_{n=1}^{N_k} \left\| x_n^{(k)} - \boldsymbol{m}_k \right\|^2 \quad \text{- Sum of squared error criterion (min)}$$

Using the definition of the mean:

$$J = \frac{1}{2} \sum_{k=1}^{K} N_k \left[\frac{1}{N_k^2} \sum_{n=1}^{N_k} \sum_{m=1}^{N_k} \frac{\left\| x_n^{(k)} - x_m^{(k)} \right\|^2}{\underline{Dis}} \right]$$

Dissimilarity measure
You can replace it with your
favorite

Other possibilities:

For within- and between- cluster scatter matrices (recall LDA)

$$J = \left| S_{W} \right| = \left| \sum_{k=1}^{K} S_{k} \right|$$

- Scatter determinant criterion (min)

$$J = tr \left| S_W^{-1} S_B \right| = \sum_{i=1}^d \boldsymbol{I}_i \quad \text{- Scatter ratio criterion (max)}$$

Careful with the ranks!

• No methodological answer

• SSE criterion (minimum variance)

- simple
- good for well separated clusters in dense groups
- affected by outliers, scale variant
- Scatter criteria
 - Invariant to general linear transformations
 - Poor on small amounts of data as related to dimensionality
- You should chose the metric and the objective that are invariant to the transformations natural to your problem

Clustering

- x input data
- *K* number of clusters (assumed known)
- N_k number points in cluster k
- N total number of data points
- t_k prototype (template) vector of k-th cluster

J – objective function, s.t. clustering is assumed optimal when J is extremized

Clustering is usually an iterative procedure:

- Choose initial configuration
- Adjust configuration s.t. J is optimized
- Check for convergence

J is often only partially minimized.

Let's choose the following model:

- Known number of clusters
- Each cluster is represented by a single prototype
- Similarity is defined in the nearest neighbor sense

Sum-Squared-Error objective:

$$J = \sum_{k=1}^{K} \sum_{n=1}^{N_k} \left\| x_n^{(k)} - t_k \right\|^2 \quad \text{- total in-cluster distance for all clusters}$$

$$\frac{dJ}{dt_k} = \sum_{c=1}^{K} \sum_{n=1}^{N_k} \frac{d}{dt_k} \left(\left\| x_n^{(k)} - t_k \right\|^2 \right) = -2 \sum_{n=1}^{N_k} \left(x_n^{(k)} - t_k \right) = 0 \implies$$

$$t_{k} = \frac{1}{N_{k}} \sum_{n=1}^{N_{k}} x_{n}^{(k)}$$

Using the iterative procedure:

- 1. Choose M random positions for the prototypes
- 2. Classify all samples by the nearest t_k
- 3. Compute new prototype positions
- 4. If not converged (no cluster assignments changed from previous iteration), go to step 2

This is the *K-Means* (a.k.a. Lloyd's, a.k.a. LBG) algorithm.

What to do with empty clusters? Some heuristics are involved.

K-Means Algorithm Example

Sometimes clusters end up empty. We can:

- Remove them
- Randomly reinitialize them
- Split the largest ones

Sometimes we have too many clusters. We can:

- Remove the smallest ones
- Relocate the smallest ones
- Merge the smallest ones together if they are neighbors

In *K-Means* we assume that we know the number of clusters

IsoData tries to estimate them – ultimate *K-Means* hack

IsoData iterates between 3 stages:

- Center estimation
- Cluster splitting
- Cluster merging

The user specifies:

 $T - \min$ number of samples in a cluster $N_D - \underline{desired}$ number of clusters $D_m - \max$ distribution

 σ_S^2 – maximum cluster variance

 D_m – max distance for merging

 N_{max} – max number of merges

Stage I – Cluster assignment:

1. Assign a label to each data point such that:

$$\mathbf{w}^n = \arg\min_j \left\| x^n - t_j \right\|$$

2. Discard clusters with $N_k < T$, reduce N_c

3. Update means of remaining clusters:

$$t_{j} = \frac{1}{N_{j}} \sum_{i=1}^{N_{j}} x_{i}^{(j)}$$

This is basically a step of K-Means algorithm

IsoData

Stage II – Cluster splitting:

- 1. If this is the last iteration, set $D_m = 0$ and go to Stage III
- 2. If $N_c <= N_D/2$, go to splitting (step 4)
- 3. If iteration is even or if $N_c >= 2N_D$ go to Stage III
- 4. Compute: $d_{k} = \frac{1}{N_{k}} \sum_{i=1}^{N_{k}} \left\| x_{i}^{(k)} - t_{k} \right\| \quad - \text{ avg. distance from the center}$ $\boldsymbol{s}_{k}^{2} = \max_{j} \frac{1}{N_{k}} \sum_{i=1}^{N_{k}} \left(x_{i,j}^{(k)} - t_{k,j} \right)^{2} \quad - \text{ max variance along a single dimension}$ $d = \frac{1}{N} \sum_{i=1}^{N_{c}} N_{k} d_{k} \quad - \text{ overall avg. distance from centers}$

Stage II – Cluster splitting (cont.):

5. For clusters with $\sigma_k^2 > \sigma_s^2$: If $(d_k > d \text{ AND } N_k > 2(T+1))$ OR $N_c < N_D/2$

Split the cluster by creating a new mean:

$$t'_{k,j} = t_{k,j} + 0.5 \mathbf{s}_{k}^{2}$$

And moving the old one to:

$$t_{k,j} = t_{k,j} - 0.5 \mathbf{s}_{k}^{2}$$

Stage III – Cluster merging:

If no split has been made:

1. Compute the matrix of distances between cluster centers

$$D_{i,j} = \left\| t_i - t_j \right\|$$

2. Make the list of pairs where $D_{i,j} < D_m$

3. Sort them in ascending order

4. Merge up to N_{max} <u>unique</u> pairs starting from the top by removing t_i and replacing t_i with:

$$t_i = \frac{1}{N_i + N_j} \left(N_i t_i + N_j t_j \right)$$

IsoData Example

Mixture model – a linear combination of parametric densities

Recall Kernel density estimation Kernels are parametric densities, subject to estimation

Example

Using ML principle, the objective function is the *log-likelihood*:

$$l(\boldsymbol{q}) \equiv \ln\left\{\prod_{n=1}^{N} p(x^{n})\right\} = \sum_{n=1}^{N} \ln\left\{\sum_{j=1}^{M} p(x^{n} \mid j) P(j)\right\}$$

Diffirentiate w.r.t. parameters:

$$\nabla_{\boldsymbol{q}_j} l(\boldsymbol{q}) = \sum_{n=1}^N \frac{\partial}{\partial \boldsymbol{q}_j} \ln \left\{ \sum_{k=1}^M p(x^n \mid k) P(k) \right\}$$

$$= \sum_{n=1}^{N} \frac{1}{\sum_{k=1}^{M} p(x^{n} | k) P(k)} \frac{\partial}{\partial q_{j}} p(x^{n} | j) P(j)$$

Here because of the log

Mixture Density

For distributions p(x|j) in the exponential family:

For a Gaussian:

$$\frac{\partial l(\boldsymbol{q})}{\partial \boldsymbol{m}_{j}} = \sum_{n=1}^{N} P(j \mid x^{n}) \Big[\sum_{j=1}^{-1} (x^{n} - \hat{\boldsymbol{m}}_{j}) \Big]$$
$$\frac{\partial l(\boldsymbol{q})}{\partial \hat{\boldsymbol{S}}_{j}} = \sum_{n=1}^{N} P(j \mid x^{n}) \Big[\hat{\boldsymbol{S}}_{j}^{-1} - \hat{\boldsymbol{S}}_{j}^{-1} (x^{n} - \hat{\boldsymbol{m}}_{j}) (x^{n} - \hat{\boldsymbol{m}}_{j})^{T} \hat{\boldsymbol{S}}_{j}^{-1} \Big]$$

Mixture Density

At the extremum of the objective: $P(j) = \frac{1}{N} \sum_{n=1}^{N} P(j | x^n) \qquad \hat{\mathbf{m}}_j = \frac{\sum_{n=1}^{N} P(j | x^n) x^n}{\sum_{n=1}^{N} P(j | x^n)}$ $\hat{\mathbf{S}}_j = \frac{\sum_{n=1}^{N} P(j | x^n) (x^n - \hat{\mathbf{m}}_j) (x^n - \hat{\mathbf{m}}_j)^T}{\sum_{n=1}^{N} P(j | x^n)}$

BUT:

$$P(j | x^{n}) = \frac{p(x^{n} | j) P(j)}{\sum_{k=1}^{M} p(x^{n} | k) P(k)} - \text{parameters are}$$

Solution – EM algorithm.

tied

Suppose we pick an initial configuration (just like in K-Means)

Recall the objective (change of sign):

$$E \equiv -l(\mathbf{q}) = -\ln\left\{\prod_{n=1}^{N} p(x^{n})\right\} = -\sum_{n=1}^{N} \ln\left\{p(x^{n})\right\}$$

After a single step of optimization:

$$E^{new} - E^{old} = -\sum_{n=1}^{N} \ln \left\{ \frac{p^{new}(x^n)}{p^{old}(x^n)} \right\}$$
$$= -\sum_{n=1}^{N} \ln \left\{ \sum_{j=1}^{M} \frac{P^{new}(j)p^{new}(x^n \mid j)}{p^{old}(x^n)} \right\}$$

EM Algorithm

After optimization step:

$$E^{new} - E^{old} = -\sum_{n=1}^{N} \ln \left\{ \sum_{j=1}^{M} \frac{P^{new}(j) p^{new}(x^n \mid j)}{p^{old}(x^n)} \right\} = 1$$

$$= -\sum_{n=1}^{N} \ln \left\{ \sum_{j=1}^{M} \left[\frac{P^{new}(j) p^{new}(x^n \mid j)}{p^{old}(x^n)} \frac{P^{old}(j \mid x^n)}{P^{old}(j \mid x^n)} \right] \right\}$$

$$= -\sum_{n=1}^{N} \ln \left\{ \sum_{j=1}^{M} \left[\frac{P^{old}(j \mid x^n)}{p^{old}(x^n)} \frac{P^{new}(j) p^{new}(x^n \mid j)}{p^{old}(x^n) P^{old}(j \mid x^n)} \right] \right\}$$
Sums to 1 over j
$$\ln \left\{ \sum_{j=1}^{M} I_j y_j \right\}$$

Definition: Function *f* is convex on [*a*, *b*] iff for any x_1, x_2 in [*a*, *b*] and any λ in [0, 1]:

$$f(\mathbf{I}x_{1} + (1 - \mathbf{I})x_{2}) \le \mathbf{I}f(x_{1}) + (1 - \mathbf{I})f(x_{2})$$

Digression - Jensen's Inequality

Proof by induction:

a) *JE* is trivially true for any 2 points (definition of convexity)*b*) Assuming it is true for any *k*-1 points:

for
$$\mathbf{I}_{i}^{*} \triangleq \mathbf{I}_{i} / (1 - \mathbf{I}_{k})$$

$$\sum_{i=1}^{k} \mathbf{I}_{i} f(x_{i}) = \mathbf{I}_{k} f(x_{k}) + (1 - \mathbf{I}_{k}) \sum_{i=1}^{k-1} \mathbf{I}_{i}^{*} f(x_{i})$$

$$\geq \mathbf{I}_{k} f(x_{k}) + (1 - \mathbf{I}_{k}) f\left(\sum_{i=1}^{k-1} \mathbf{I}_{i}^{*} x_{i}\right)$$

$$\geq f\left(\mathbf{I}_{k} x_{k} + (1 - \mathbf{I}_{k}) \sum_{i=1}^{k-1} \mathbf{I}_{i}^{*} x_{i}\right) = f\left(\sum_{i=1}^{k} \mathbf{I}_{i} x_{i}\right)$$

End of digression

Back to EM

by Jensen's inequality:

$$\leq -\sum_{n=1}^{N} \sum_{j=1}^{M} P^{old}(j \mid x^{n}) \ln \left\{ \frac{P^{new}(j) p^{new}(x^{n} \mid j)}{p^{old}(x^{n}) P^{old}(j \mid x^{n})} \right\}$$
$$\sum_{j=1}^{M} I_{j} \ln \{y_{j}\}$$

Back to EM

by Jensen's inequality:

$$\leq -\sum_{n=1}^{N} \sum_{j=1}^{M} P^{old}(j \mid x^{n}) \ln \left\{ \frac{P^{new}(j) p^{new}(x^{n} \mid j)}{p^{old}(x^{n}) P^{old}(j \mid x^{n})} \right\}$$
call this "Q"

EM as Upper Bound Minimization

Then:

- *upper bound* on $E^{new}(\theta^{new})$

Some observations:

- Q is convex
- Q is a function of new parameters θ^{new}
- So is E^{new}
- If $\theta^{new} = \theta^{old}$ then $E^{new} = E^{old} + Q$

EM Iteration

EM (cont.)

$$Q = -\sum_{n=1}^{N} \sum_{j=1}^{M} P^{old}(j \mid x^{n}) \ln \left\{ \frac{P^{new}(j) p^{new}(x^{n} \mid j)}{p^{old}(x^{n}) P^{old}(j \mid x^{n})} \right\}$$

$$\tilde{Q} = -\sum_{n=1}^{N} \sum_{j=1}^{M} P^{old}(j \mid x^{n}) \ln \left\{ P^{new}(j) p^{new}(x^{n} \mid j) \right\}$$
for a Gaussian mixture:

$$= -\sum_{n=1}^{N} \sum_{j=1}^{M} P^{old}(j \mid x^{n}) \left\{ \ln P^{new}(j) - \ln \left(G_{j}(x^{n}) \right) \right\}$$

As before – differentiate, set to 0, solve for parameter.

EM (cont.)

Straight-forward for means and covariances:

$$\hat{\boldsymbol{m}}_{j} = \frac{\sum_{n=1}^{N} P^{old}(j \mid x^{n}) x^{n}}{\sum_{n=1}^{N} P^{old}(j \mid x^{n})}$$

- convex sum, weighted w.r.t. previous estimate

$$\hat{\mathbf{S}}_{j} = \frac{\sum_{n=1}^{N} P^{old} (j \mid x^{n}) (x^{n} - \hat{\mathbf{m}}_{j}) (x^{n} - \hat{\mathbf{m}}_{j})^{T}}{\sum_{n=1}^{N} P^{old} (j \mid x^{n})}$$

- convex sum, weighted w.r.t. previous estimate

EM (cont.)

Need to enforce sum-to-one constraint for P(j):

$$J_{P} = \tilde{Q} + \boldsymbol{I}\left(\sum_{j=1}^{M} P^{new}(j) - 1\right)$$

$$\frac{\partial}{\partial P^{new}(j)}J_P = -\sum_{n=1}^N \frac{P^{old}(j \mid x^n)}{P^{new}(j)} + I = 0$$

$$\Rightarrow I P^{new}(j) = \sum_{n=1}^{N} P^{old}(j \mid x^{n})$$

$$\Rightarrow I \sum_{j=1}^{M} P^{new}(j) = \sum_{n=1}^{N} \sum_{j=1}^{M} P^{old}(j \mid x^{n})$$

$$\Rightarrow I = N \qquad \Rightarrow P^{new}(j) = \frac{1}{N} \sum_{n=1}^{N} P^{old}(j \mid x^{n})$$

EM Example

EM Illustration

P(j|x) tells how much the data point affects each cluster, unlike in K-means.

You can manipulate P(j|x). Eg: Partially labeled data

EM vs K-Means

Different thresholds induce different cluster configurations.

Stopping criterion – either a number of clusters, or a distance threshold

General structure:

$$\begin{array}{l} \underline{Initialize}: K, \ \hat{K} \leftarrow N, \ D_n \leftarrow x_n, n = 1..N \\ \underline{do} \quad \hat{K} \leftarrow \hat{K} - 1 \\ i, \ j = \operatorname*{argmin}_{l,m} d(D_l, D_m) \\ merge(D_i, D_j) \\ \underline{until} \quad \hat{K} = K \end{array} \qquad Need \ to \ specify \\ \end{array}$$

$$\begin{array}{l} \text{Ex:} \quad d = d_{mean}(D_i, D_j) = \left\| \mathbf{m}_i - \mathbf{m}_j \right\| \\ d = d_{\min}(D_i, D_j) = \min_{x_1 \in D_i, x_2 \in D_j} \left\| x_1 - x_2 \right\| \\ d = d_{\max}(D_i, D_j) = \max_{x_1 \in D_i, x_2 \in D_j} \left\| x_1 - x_2 \right\| \\ \end{array}$$

Single Linkage Algorithm

Choosing $d = d_{min}$ results in a Nearest Neighbor Algorithm (a.k.a single linkage algorithm, a.k.a. minimum algorithm)

$$N=2$$

Each cluster is a minimal spanning tree of the data in the cluster.

Identifies clusters that are well separated

Complete Linkage Algorithm

Choosing $d = d_{max}$ results in a Farthest Neighbor Algorithm (a.k.a. complete linkage algorithm, a.k.a. maximum algorithm)

Each cluster is a complete subgraph of the data.

Identifies clusters that are well localized

- General concerns about choice of similarity metric
- K-means algorithm simple but relies on Euclidean distances
- IsoData old-school step towards model selection
- EM "statistician's K-means" simple, general and convenient
- Some hierarchical clustering schemes