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Clustering


• 
similarity 

• Clusters are groups of measurements that are similar 

• In Classification groups of similar data form classes 
– Labels are given 
– Similarity is deduced from labels 

• In Clustering groups of similar data form clusters 
– Similarity measure is given 
– Labels are deduced from similarity 

Clustering is a process of partitioning the data into groups based on 
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Clustering
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Questions


• What is “similar”? 
• What is a “good” partitioning? 
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Distances


Most obvious: distance between samples 

x 

y 

We need a metric to define distances and thresholds 

• Compute distances between the samples 
• Compare distances to a threshold 
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Metric and Invariance


( ) 
1/ 

1 

, ' ' 
qd 

q 
k k 

k 

d x x 
= 

� � = -� �
Ł ł
� 

1q = � Manhattan/city block/taxicab distance 

2q = � Euclidean distance 

d( ) is invariant to rotation and translation only for q = 2 

x  x  - Minkowski metric 

• We can choose it from a family: 

x, x’
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Minkovski Metrics


Points a distance 1 from origin 

{ }1 1L q =� 2L 

3L 

4L 

10L 

L¥ 
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Metric and Invariance


( ) ( ) ( )1 , ' ' 'T x x  -= - S -

Other choices for invariant metric: 

( )1 /2' Tx x -= L F 
And then use the Euclidean metric 

• We can normalize data (whiten) 

• We can use data-driven metric: 

d  x x  x  x  - Mahalanobis distance  
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Metric


Euclidean metric 

Whitening: 

• Good for isotropic spaces 
• Bad for linear transformations (except rotation and translation) 

• Good if the spread is due to random processes 
• Bad if it is due to subclasses 

Mahalanobis metric: 
• Good if there is enough data 

Fall 2004 Pattern Recognition for Vision 



Similarity


We need a symmetric function that is large for “similar” x

t 

, ') = 
x x  ' 

E.g.: s ( x x  - “angular” similarity 
tx x  ' 

Vocabulary:

{Two, three, little, star, monkeys, jumping, twinke, bed }


a) Three little monkeys jumping on the bed (0, 1, 1, 0, 1, 1, 0, 1)

b) Two little monkeys jumping on the bed (1, 0, 1, 0, 1, 1, 0, 1) 
c) Twinkle twinkle little star  (0, 0, 1, 1, 0, 0, 2, 0) 

a b c 
a 1.0 0.8 0.18


Similarity matrix:
 0.8 1.0
 0.18b

c
 0.18 0.18 1.0 
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Similarity


It doesn’t have to be metric: 

( ) ' 
, '  

tx x  
s x x  

d 
= 

011Platypus 
101Monkey 

Can typeHas 4 legsHas furE.g.: 

( ) ' 
, '  

' ' ' 

t 

t t t 

x x  
s x x  

x x x x  
= 

+ -

.67.33 

.33.67 

1.33 
.331 

x  x  

Tanimoto coefficient 
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Partitioning Evaluation


J J 
is minimized or maximized 

2( )  

1 1 

kNK 
k 

n k 
k n 

J x m 
= = 

= -�� 

2( )  
2 

1 1 1 

1 1 
2 

k kN NK 
k k 

k n m 
k n mk 

J N x x 
N= = = 

Ø ø 
= -Œ œ 

º ß 
� �� 

Dissimilarity measure 
You can replace it with your 

favorite 

Using the definition of the mean: 

– objective function, s.t. clustering is assumed optimal when 

- Sum of squared error criterion (min) 

(  )  
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Partitioning Evaluation


Other possibilities: 

1 

K 

W k 
k 

J S S 
= 

= = � 

1 

1 

d 

W B i 
i 

J tr S S  l-

= 

= = � 

Careful with the ranks! 

- Scatter determinant criterion (min) 

- Scatter ratio criterion (max) 

For within- and between- cluster scatter matrices (recall LDA) 
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Which to choose?


• No methodological answer 

• SSE criterion (minimum variance) 
– simple 
– good for well separated clusters in dense groups 
– affected by outliers, scale variant 

• Scatter criteria 
– Invariant to general linear transformations 
– Poor on small amounts of data as related to dimensionality 

• 
the transformations natural to your problem 
You should chose the metric and the objective that are invariant to 
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Clustering


x 

K 

N 

Nk k 

J J 

tk k

– input data 

– number of clusters (assumed known) 

– total number of data points 

– number points in cluster 

– objective function, s.t. clustering is assumed optimal when 
is extremized 

– prototype (template) vector of -th cluster 
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General Procedure


Clustering is usually an iterative procedure: 

J is optimized 

J is often only partially minimized. 

• Choose initial configuration 
• Adjust configuration s.t. 
• Check for convergence 
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Clustering – A Good Start


Let’s choose the following model: 

2( )  

1 1= = 

= -��
kNK 

k 
n k 

k n 

J x t 

objective: 

( )2 ( )  

1 1 1 

2 ( ) 0  
k kN NK 

k k 
n k n k 

c n nk k 

d 
x t x t 

dt= = = 

= - = - - = �� 

( )  

1 

1 

= 

= � 
kN 

k 
k n 

nk 

t x 
N 

• Known number of clusters 
• Each cluster is represented by a single prototype 
• Similarity is defined in the nearest neighbor sense 

Sum-Squared-Error  

- total in-cluster distance for all clusters 

(  )  dJ  
dt  ��  
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K-Means Algorithm


Using the iterative procedure: 

1. Choose M random positions for the prototypes 
2. Classify all samples by the nearest tk 
3. Compute new prototype positions 
4. If not converged (no cluster assignments changed from previous 

iteration), go to step 2 

This is the (a.k.a. Lloyd’s, a.k.a. LBG) algorithm. 

What to do with empty clusters? Some heuristics are involved. 

K-Means 

Fall 2004 Pattern Recognition for Vision 



K-Means Algorithm Example


K = 10 
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Cluster Heuristics


Sometimes clusters end up empty. We can: 

Sometimes we have too many clusters. We can: 

• Remove them 
• Randomly reinitialize them 
• Split the largest ones 

• Remove the smallest ones 
• Relocate the smallest ones 
• Merge the smallest ones together if they are neighbors 
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IsoData Algorithm


In we assume that we know the number of clusters 

hack 

• Center estimation 
• Cluster splitting 
• Cluster merging 

The user specifies: 

T 

ND – desired number of clusters Dm 

σS 
2 Nmax 

K-Means 

IsoData tries to estimate them – ultimate K-Means 

IsoData iterates between 3 stages: 

– min number of samples in a cluster 

– max distance for merging 

– maximum cluster variance – max number of merges 
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IsoData


1. Assign a label to each data point such that: 
n n 

j
j 

x tw = -

2. Discard clusters with Nk < T, reduce Nc 

3. Update means of remaining clusters: 

( )  

1 

1 

= 

= � 
jN 

j 
j i 

ij 

t x 
N 

This is basically a step of algorithm 

Stage I – Cluster assignment: 

arg  min 

K-Means 
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IsoData


1. If this is the last iteration, set Dm=0 and go to Stage III 

4. Compute: 

( )  

1 

1 kN 
k 

k i k 
ik 

d x t 
N = 

= -� 

2. If Nc<=ND/2, go to splitting (step 4) 

3. If iteration is even or if Nc>=2ND go to Stage III 

( )22 ( )  
, , 

1 

1 
maxs 

= 

= -�
kN 

k 
k i j k jj ik 

x t 
N dimension 

1 

1 

= 

= � 
cN 

k k  
k 

d N d  
N 

Stage II – Cluster splitting: 

- avg. distance from the center 

- max variance along a single 

- overall avg. distance from centers 
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IsoData


5. For clusters with σk 
2 > σS 

2: 

2 
, , ' 0.5s= +k j k j kt t 

If ( dk>d AND Nk>2(T+1) ) OR Nc<ND /2 

Split the cluster by creating a new mean: 

2 
, , 0.5s= -k j k j kt t 

And moving the old one to: 

Stage II – Cluster splitting (cont.): 
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IsoData


If no split has been made: 

1. Compute the matrix of distances between cluster centers 

, = -i j i jD t t  

2. Make the list of pairs where , <i j mD D 

3. Sort them in ascending order 

4. Merge up to Nmax unique pairs starting from the top by 
removing tj and replacing ti with: 

( )1 = + 
+i j j  

i j 

t N t  
N N 

Stage III – Cluster merging: 

i  i  N  t  
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IsoData Example


ND = 10 
T = 10 
σS 

2 = 3 
Dm = 2 
Nmax = 3 
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Mixture Density Model


1= 

= � 
M 

j 

j P j  

Recall Kernel density estimation 
Kernels are parametric densities, subject to estimation 

Mixture model 

Component 
density 

Component 
weight 

1= 

=� 
M 

j 

P j0,‡ "P j j and 

Number of components 

(  )  ( | )  ( )  p  x  p  x  

– a linear combination of parametric densities 

(  ) 1  (  )  
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Example


1= 

= � 
M 

j 

j P j(  )  ( | )  ( )  p x  p x  
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Mixture Density


1 

1 

1 ( 
( 

N 
n 

M 
nn j 

k 

j P j  
k P k  q= 

= 

¶= 
¶� 

� 

Using ML principle, the objective function is the : 

1 11 

( ) (q 
= == 

� �� �
” =� � � � 

� � � � 
� �� 

N N M 
n n 

n jn 

l j P j  

1 1 

(q q 
q= = 

¶ � �
� = � �¶ � �

� �j 

N M 
n 

n kj 

l k P k  

Here because of the log 

| )  ( )  
| )  ( )  

p  x  
p  x  

log-likelihood

(  )  ln  ln  | )  ( )  p  x  p  x  

(  )  ln  | )  ( )  p  x  

Diffirentiate w.r.t. parameters: 
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Mixture Density


For distributions p(x| j) in the exponential family: 

1 

( )  
( | ) ( ) 

N 
n 

n 

l 
P j  x

q 
q = 

¶
� = · +

¶ � 

[ ] [ ] ( , )( )q q qq q q q 
q q q 
¶ ¶ ¶Ø ø = +º ß¶ ¶ ¶ 

B x B x B xA e A e B x A e 

1 

1 

( )  ˆ( | ) ( ) 
N 

n n 
j j 

nj 

l 
P j  x x

q 
m 

m 
-

= 

¶ Ø ø= S -º ß¶ � 

For a Gaussian: 

1 1 1 

1 

( )  ˆ ˆ ˆˆ ˆ( | ) ( )ˆ 
q 

m m - - -

= 

¶ Ø ø= - - -º ß¶ � 
N 

n n n T 
j j j j j 

nj 

l 
P j  x x xS S S 

S 

Goes in here Goes in here Goes in here 

Stuff  More  Stuff 

( ,  )  ( ,  )  (  )  (  )  ( ,  )  

)(  
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Mixture Density


1 

1 N 
n 

n 

P j P j x
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= � 

( ) ( ) 
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P j x  
S 
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1 
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j N 

n 

n 

P j x  
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= 
� 

� 

BUT: 

1 

( 

( 

n 
n 

M 
n 

k 

j P j
P j x  

= 

= 

� 

At the extremum of the objective: 

(  )  (  | )  

(  | )  

(  | )  

P j x  

(  | )  

(  | )  

P j x x  

Solution – EM algorithm. 

| )  ( )  
(  | )  

| )  ( )  

p x  

p x  k P k  
- parameters are tied 
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EM Algorithm


{ } 
11 

( ) ( )q 
== 

� � 
= -� � 

� � 
�� 

N N 
n n 

nn 

E l p x  

Recall the objective (change of sign): 

1 

( )
ln 

( )= 

� � 
- = - � � 

� � 
� 

nN 
old 

n 
n 

p x
E E 

p x 

After a single step of optimization: 

1 1 

( | )
ln 

( )= = 

� � 
= - � � 

� � 
� �  

nN M 

n 
n j 

P j p x j  
p x 

(  )  ln  ln  ” - = - p  x  

new  
new  

old  

Suppose we pick an initial configuration (just like in K-Means) 

(  )  new  new  

old  
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EM Algorithm


1 1 

( ) ( | )
ln 

( )  

new new nN M 
new old 

old n 
n j 

P j p x j
E E 

p x= = 

� � 
- = - � � 

� � 
� �  

After optimization step: 

1 1 

( ) ( | ) ( | )
ln 

( ) ( | )= = 

� �Ø ø� �= - � �Œ œ
� �º ß� �

� �  
new new n old nN M 

old n old n 
n j 

P j p x j P j x  
p x P j x  

= 1 

1 1 

( ) ( | )
ln ( | )  

( ) ( | )= = 

� �Ø ø� �= - � �Œ œ
� �º ß� �

� �  
new new nN M 

old n 
old n old n 

n j 

P j p x j
P j x  

p x P j x  

Sums to 1 over j 
1 

ln 
M 

j j 
j 

yl 
= 

� � 
� � 
� � 
� 
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Digression-Convexity


( ) ( )1 2 1 2)f x x f x f xl l l l£ + -

Definition: Function f is convex on [a, b x1, x2 in [a, b] 
and any λ in [0, 1]: 

f(x) 

f(x) 
f(x) 

f(λx1+( λ)x2) 

λf(x1)+( λ)f(x2) 

x1 λx1+( λ) x2 x2 

(1  (1  )  ( )  + -

] iff for any 

1-

1-

1-
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Digression - Jensen’s Inequality


1 1 

( )  
M M 

j j j j 
j j 

f x f xl l 
= = 

� �
£� � 

Ł ł 
� � 

: 0 1j j 
j 

l l l" =� 

If f is a convex function: 

Equivalently: ( ) [E f x£ 

Or: 
1 1 

1 1 
( )  

M M 

j j 
j j 

f x f x  
M M= = 

� �
£� � 

Ł ł 
� � 

Flip the inequality if f is concave 

1,  £ £  

[  ]  (  )] f  E x  
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Digression - Jensen’s Inequality


Proof by induction: 
a) JE is trivially true for any 2 points (definition of convexity) 
b) Assuming it is true for any points: 

1 
* 

1 1 

( ) ( )  ) ( )l l l l 
-

= = 

= + -� � 
k k 

i i k k k i i 
i i 

f x f x f x  

1 
* 

1 

( )  (1 )l l l 
-

= 

� �‡ + - � �
Ł ł
� 
k 

k k k i i 
i 

f x f x 

1 
* 

1 1 

(1 )l l l l 
-

= = 

� �‡ + - =� �
Ł ł

� � 
k k 

k k k i i i i  
i i 

f x x f x 

*for / )l l l-�i i k 

End of digression 

k-1 

(1  

� �  
� �  
ł Ł  

(1  
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Back to EM


new oldE E- = 

Change in the error: 

1 1 

( ) ( | )
ln ( | )  

( ) ( | )= = 

� �Ø ø� �= - � �Œ œ
� �º ß� �

� �  
new new nN M 

old n 
old n old n 

n j 

P j p x j
P j x  

p x P j x  

λ 

1 

ln 
M 

j j 
j 

yl 
= 

� � 
� � 
� � 
� 

1 1 

( ) ( | )
( | ) ln 

( ) ( | )  

new new nN M 
old n 

old n old n 
n j 

P j p x j
P j x  

p x P j x= = 

� �
£ - � � 

� � 
�� 

{ } 
1 

ln 
M 

j j 
j 

yl 
= 

� 

by Jensen’s inequality: 
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Back to EM


new oldE E- = 

Change in the error: 

1 1 

( ) ( | )
ln ( | )  

( ) ( | )= = 

� �Ø ø� �= - � �Œ œ
� �º ß� �

� �  
new new nN M 

old n 
old n old n 

n j 

P j p x j
P j x  

p x P j x  

λ 

1 

ln 
M 

j j 
j 

yl 
= 

� � 
� � 
� � 
� 

1 1 

( ) ( | )
( | ) ln 

( ) ( | )  

new new nN M 
old n 

old n old n 
n j 

P j p x j
P j x  

p x P j x= = 

� �
£ - � � 

� � 
�� 

by Jensen’s inequality: 

call this “Q” 
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EM as Upper Bound Minimization


oldE E Q£ +Then: 

Some observations: 
• Q is convex 
• Q is a function of new parameters θ new 

Enew 

θ new = θ old then Enew = Eold +Q 

( )newE q 

newq 

( )newE q 

oldq 

oldE 

( )newE Q q+ 

- upper bound on Enew(θ new) 

Step downhill in Q leads 
downhill in Enew !!! 

new  

• So is 
• If 

new  

old  
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EM Iteration


( )newE q 

newq 

( )newE q 

oldq 

oldE 

( )newE Q q+ 

( )newE q 

newq 

( )newE q 

oldq 

oldE 

( )newE Q q+ 

Given initial θ minimize Q 

Compute new Eold +Q 

new  

old  

new  old  
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EM (cont.)


1 1 

( | )
( | 

( )= = 

� � 
= - � � 

� � 
�� 

nN M 
n 

n n 
n j 

P j p x j
Q P j x  

p x P j x  

Can drop these 

{ } 
1 1 

( | ( | )  
= = 

= -��� N M 
n n 

n j 

Q P j x P j p x j  

for a Gaussian mixture: 

( ){ }
1 1 

( | ( )  
N M 

n n 
j 

n j 

P j x P j G x  
= = 

= - -�� 

(  )  
)  ln 

(  | )  

new  new  
old  

old  old  

)  ln  (  )  old  new  new  

)  ln  (  )  ln  old  new  

As before – differentiate, set to 0, solve for parameter. 
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EM (cont.)


( ) ( ) 
1 

1 

ˆ ˆ 
ˆ 

m m 
= 

= 

- -
= 

� 

� 

N Tn n n 
j j 

n 
j N 

n 

n 

P j x x x 

P j x  
S 

1 

1 

m̂ = 
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= 
� 

� 

N 
n n 

n 
j N 

n 

n 

P j x x  

P j x  previous estimate 

previous estimate 

Straight-forward for means and covariances: 

(  | )  

(  | )  

old  

old  

(  | )  

(  | )  

old  

old  

- convex sum, weighted w.r.t. 

- convex sum, weighted w.r.t. 
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EM (cont.)
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l 
= 

� � 
= + -� � 
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�� M 
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J Q P j 

P(j): 
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0
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P new 
n 

P j x
J

P j P j 
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l 
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P j P j x  

l� = N 
1 
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= 

� = � 
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n 

P j P j x
N 

(  ) 1  

Need to enforce sum-to-one constraint for 

(  | )  
(  )  

= -
old  

new  

(  )  (  | )  new  old  

(  )  (  | )  new  old  

(  )  (  | )  new  old  
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EM Example


Nc = 3 
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EM Illustration


1m 

2m 
3m 

1m 

2m 
3m 

( =P j x 

( =P j x( =P j x 

You can manipulate P(j|x). 

unlabeled 
point 

labeled 
point 

P(j|x) tells how much the data point 

means. 

1| )  

3  | )  2  | )  

Eg: Partially labeled data 

affects each cluster, unlike in K-
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EM vs K-Means


1m 

2m 
3m 

1m 

2m 
3m 

( =P j x 

( =P j x( =P j x 

Furthermore, P(j|x) can be replaced with: 

( | )  

( | )  

0 

( | )
( | )  

( | )  P k x  

k 

P j x  
g 

g 

g = 

= 
� 

� 

P j x  
g 

d 
fi¥ 

=� 

( | )P j xg = =� 

Now let’s relax g : 

1| )  

3  | )  2  | )  

P j x  P j x e  
P k x e  

lim ( |  )  ( ( |  ),max  ( |  )) P j x  P j x  

This is K-Means!!! 

if  0,  ( |  )  P j x  
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Hierarchical Clustering


Dissimilarity 

1x 6x… 
1 

2 

3There are 2 ways to do it: 

Different thresholds induce different cluster configurations. 

2T = 

3T = 

Ex: Dendrogram 

• Agglomerative (bottom-up) 
• Divisive (top-down) 

Stopping criterion – either a number of clusters, or a distance threshold 
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Hierarchical Agglomerative Clustering


General structure: 

ˆ, , , 1..n nK K N D x n N‹ ‹ = 
ˆ ˆ 1K K‹ -

, 
, ( , )l m 

l m  
i j = 

( , )i j 

Initialize: 

do 

until K̂ K== Need to specify 

1 2 
1 2 , 

( , ) min 
i j 

i j x D x D  
d d x x 

˛ ˛ 
= = -

1 2 
1 2 , 

( , ) max 
i j 

i j x D x D  
d d x x 

˛ ˛ 
= = -

( , )i j i jd d D D  m m= = -Ex: 
Each induces 
different 
algorithm 

argmin  d  D D  

merge  D D  

min  D  D  

max  D  D  

mean  
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Single Linkage Algorithm


Choosing min results in a Nearest Neighbor Algorithm (a.k.a 
single linkage algorithm, a.k.a. minimum algorithm) 

N = 2 

Identifies clusters that are well separated 

d = d

Each cluster is a minimal spanning tree of the data in the cluster. 
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Complete Linkage Algorithm


Choosing max results in a Farthest Neighbor Algorithm (a.k.a. 
complete linkage algorithm, a.k.a. maximum algorithm) 

N = 2 

Identifies clusters that are well localized 

d = d

Each cluster is a complete subgraph of the data. 
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Summary


• General concerns about choice of similarity metric 
• K-means algorithm – simple but relies on Euclidean distances 
• IsoData – old-school step towards model selection 
• EM – “statistician’s K-means” – simple, general and convenient 
• Some hierarchical clustering schemes 
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