Problem C5. (Unified Computers and programming)

1. Convert the following base 10 numbers into 8-bit 2’s complement notation

 0, -1, -12

2. Perform each of the following additions assuming that the bit strings represent values in 2’s complement notation. Identify the cases in which the answer is incorrect because of overflow.

 \[
 \begin{array}{ccc}
 1111 & 01111 & 01110 \\
 +1111 & +10001 & +01010 \\
 \end{array}
 \]

 Hint: The bit strings are only 5 bits long so your answer should also be 5 bits long.

3. Write an algorithm to convert a negative decimal number into a binary number in 2’s complement form. Assume that the number ranges from +127 to -128

 Hint: You already know how to convert a positive decimal number into binary notation. Think about determining sign and inverting bit positions.