Need to consider possibility of buckling in support

Material selection

achieve certain (required) buckling load while minimizing

\[P_{\text{crit}} = \frac{\pi^2 \sigma}{L^2} \quad \text{max. mass} = \pi R^2 L E \]

anneal circular cross-section \(I = \frac{\pi R^4}{4} \)

F = \frac{M}{G M}

maximize \(E/\sigma^2 \) for highest buckling load for given mass

(Previously maximize \(\sigma/\sigma^2 \))
Re-ranking materials

<table>
<thead>
<tr>
<th></th>
<th>σ_t/σ</th>
<th>E/E^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel</td>
<td>2.8×10^3</td>
<td>3.3×10^3</td>
</tr>
<tr>
<td>Al</td>
<td>1.25×10^3</td>
<td>9.0×10^3</td>
</tr>
<tr>
<td>Ti</td>
<td>1.88×10^3</td>
<td>5.9×10^3</td>
</tr>
<tr>
<td>CFRP</td>
<td>4.66×10^3</td>
<td>3.1×10^3</td>
</tr>
<tr>
<td>Wood</td>
<td>5.0×10^3</td>
<td>3.7×10^3</td>
</tr>
<tr>
<td>SiC</td>
<td>1.00×10^3</td>
<td>4.5×10^3</td>
</tr>
</tbody>
</table>

CFRP still looks very good - high E/E^2

Wood might be better in welding dominated design.

Reconsider design.
Reconsider design.

\[F_{AB} = -10 \text{ kN} \]
\[F_{BC} = -22.4 \text{ kN} \]

BC is the largest member at highest compressive force. Only need to consider this.

Assume that it is a simply supported column.

\[P_{\text{crit}} = \frac{\pi^2 \cdot E \cdot I}{L^2} \quad \text{given circular cross-section} \]

\[I = \frac{\pi R^4}{4} \]

\[\therefore P_{\text{crit}} = \frac{\pi^2 \cdot E \cdot \pi R^4}{4 \cdot L^2} \]

\[R = \frac{P_{\text{crit}} \times 4 \cdot L^2}{\pi^3 \cdot E} = \frac{22.4 \times 10^3 \times 4 \times 5}{\pi^3 \times 70 \times 10^9} \]

\[= 0.021 \text{ m}. \]

\[\therefore \text{area} = \pi R^2 = 0.0014 = 14.30 \text{ mm}^2 \quad \text{(of 32 mm}^2 \text{ before)} \]

\[\therefore \text{mass increases by} \frac{14.30}{32} = 44.7 \text{ Nm weight, weight:} \]

\[0.29 \times 44.7 = 13.0 \text{ kg!} \]