Problem Set 13

<table>
<thead>
<tr>
<th></th>
<th>Time Spent (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP18-20</td>
<td></td>
</tr>
<tr>
<td>S16</td>
<td></td>
</tr>
<tr>
<td>S17</td>
<td></td>
</tr>
<tr>
<td>S18</td>
<td></td>
</tr>
<tr>
<td>Study Time</td>
<td></td>
</tr>
</tbody>
</table>

Announcements: Q7P will be on Friday, May 7
CP18-20

The problems in this problem set cover lecture [C17 = quiz review], C18, C19, C20

1. The operation \oplus is defined for two Boolean variables A, B as follows:

 \[A \oplus B = \overline{AB} + \overline{A}B \]

 Draw the truth table for $A \oplus B$.

2. What are the minterms in the expression $A \oplus B \oplus C$?

 Hint: Use a dummy variable D for $A \oplus B$, apply the Boolean algebra theorems, then replace D with $A \oplus B$ and repeat the process.

3. Convert the following English statements into formal propositions.
 - a. The killer touched both the candlestick and the wrench.
 - b. There are exactly 2 sets of fingerprints on the candlestick.
 - c. Joe touched either the candlestick or the wrench, but not both.
 - d. George only touched the candlestick.
 - e. George saw Hannah touch the wrench.
 - f. Hannah touched all the weapons that George touched.
 - g. Hannah saw Joe touch the candlestick.

 Given that there is only one killer, use resolution to identify the killer.

4. Provide a **Direct Proof** of the following, where a, b, and c are integers:

 \[\text{If } a \mid b \text{ and } b \mid c, \text{ then } a \mid c \]

 Hint: definition of “\mid” (Divisible) is given in lecture 20.

5. Prove using induction that $P(n) = P(n-1) + P(n-2)$, where $P(n)$ is a Fibonacci number.

 Hint: What are Fibonacci numbers? That will help you identify the base case.

6. Prove using induction that if p does not divide any of the numbers a_1, a_2, a_3, ..., a_n (i.e., p is not a common divisor for a_1, a_2, a_3, ..., a_n) then p does not divide $a_1*a_2*a_3*...*a_n$.
Problem S16 (Signals and Systems)

Do problem 8.8 from Openheim and Willksy, *Signals and Systems*.

Note that this system implements a type of single sideband amplitude modulation.
Problem S17 (Signals and Systems)

Problem S18 (Signals and Systems)