Elementary Logic

• Proposition is sentence that can be either true or false, not both

• Symbolic notations for manipulating logic of propositions
 - \neg “not” or negation
 - \land “and”
 - \lor “or”
 - \leftrightarrow “if and only if”
 - \rightarrow “implies”

• Quantifiers
 - $\forall x p(x)$ “is true if for all x in U, $p(x)$ is true”
 - $\exists x p(x)$ “is true if there exists an x such that $p(x)$ is true”
Elementary Logic

• The proposition \(q \rightarrow p \) is called the converse of \(p \rightarrow q \), and \(\neg q \rightarrow \neg p \) is the contrapositive of \(p \rightarrow q \)

• **Example:**
 - Give the converse of the following propositions
 • \(q \rightarrow r \)
 • If I am smart, then I am rich
 • If \(x^2 = x \), then \(x = 0 \) or \(x = 1 \)
 • If \(2 + 2 = 4 \), then \(2 + 4 = 8 \)
 - Give the contrapositives for the propositions above

• Breaking assertions into component propositions
 - look for the logical operators!

Example:
If I go to Harry’s or go to the country I will not go shopping.

P: I go to Harry’s
Q: I go to the country
R: I will go shopping
If......P......or.....Q.....then....not.....R

\[(P \lor Q) \rightarrow \neg R\]
Elementary Logic

- Let p, q, r be the following propositions
 - p = “it is raining”
 - q = “the sun is shining”
 - r = “there are clouds in the sky”
- Translate the following into logical notation, using p, q, r and logical connectives
 - It is raining and the sun is shining
 - If it is raining, then there are clouds in the sky
 - If it is not raining, then the sun is not shining and there are clouds in the sky
 - The sun is shining if and only if it is not raining
 - If there are no clouds in the sky, then the sun is shining

Convert the following into predicate logic sentences

- Shamu can do every trick
- Shamu can do any trick
- Shamu cannot do every trick
- If any whale can do a trick, Shamu can
- If every whale can do a trick, Shamu can
- If any whale can do a trick, any whale can do a trick
\[T_\alpha = \alpha \text{ is a trick} \]
\[W_\alpha = \alpha \text{ is a whale} \]
\[S_\alpha = \text{Shamu can do } \alpha \]
\[C_\alpha = \alpha \text{ can do a trick} \]
\[s = \text{Shamu} \]

\[\forall x (T_x \rightarrow S_x) \] [Shamu can do every trick]
\[\neg \forall x (T_x \rightarrow S_x) \] [Shamu cannot do every trick]

[If any whale can do a trick, Shamu can]
\[\forall x (W_x \text{ and } C_x \rightarrow C_s) \]

[If every whale can do a trick, Shamu can]
\[\forall x (W_x \rightarrow C_x) \rightarrow C_s \]
Proof by Cases

- Consider several cases that are exhaustive—i.e., that include all the possibilities
- **Example**: Prove that $n^2 - 2$ is not dividable by 5 for any positive integer
 - Case 1: $n=5k$
 - Case 2: $n=5k+1$
 - Case 3: $n=5k+2$
 - Case 4: $n=5k+3$
 - Case 5: $n=5k+4$

Proof by Contradiction

- We show that a conclusion holds by assuming it does not. If this leads to ‘nonsense’ contrary to reality (or hypotheses), then we have reached a contradiction.
- **Example**: Prove that there are infinitely many primes.
- **Example**: Prove that the sum of a rational number and an irrational number is always irrational.
Direct Proof

- Show that a given statement is true by simple combination of existing theorems with/without some mathematical manipulations
 \(- H_1 \land H_2 \land \ldots \land H_n \Rightarrow C\)

- Proof of the contrapositive (indirect proof)
 \(- \neg C \Rightarrow \neg (H_1 \land H_2 \land \ldots \land H_n)\)

Direct or Indirect Proof?

- **Example**: Let \(m, n \in \mathbb{N}\). Prove that if \(m+n \geq 73\) then \(m \geq 37\) or \(n \geq 37\)
Proof by Contradiction

- \((H_1 \land H_2 \land ... \land H_n) \land \neg C \Rightarrow a \text{ contradiction}\)

- **Example**: If \(5n+6\) is odd, then \(n\) is odd

- **Example**: prove that at least 4 of any 22 days must fall on the same day of the week

<table>
<thead>
<tr>
<th>Rule of Inference</th>
<th>Tautology</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p)</td>
<td>(p \rightarrow (p \lor q))</td>
<td>Addition</td>
</tr>
<tr>
<td>(p \land q)</td>
<td>((p \land q) \rightarrow p)</td>
<td>Simplification</td>
</tr>
<tr>
<td>(p, q)</td>
<td>((p \land q) \rightarrow p \land q)</td>
<td>Conjunction</td>
</tr>
<tr>
<td>(p, p \rightarrow q)</td>
<td>((p \land (p \rightarrow q)) \rightarrow q)</td>
<td>Modus Ponens</td>
</tr>
<tr>
<td>(\neg q, p \rightarrow q)</td>
<td>((\neg q \land (p \rightarrow q)) \rightarrow \neg p)</td>
<td>Modus Tollens</td>
</tr>
<tr>
<td>(p \rightarrow q, q \rightarrow r)</td>
<td>(((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r))</td>
<td>Hypothetical Syllogism</td>
</tr>
<tr>
<td>(p \lor q, \neg p)</td>
<td>(((p \lor q) \land \neg p) \rightarrow q)</td>
<td>Disjunctive Syllogism</td>
</tr>
<tr>
<td>(p \lor q, \neg p \lor r)</td>
<td>(((p \lor q) \land (\neg p \lor r)) \rightarrow q \lor r)</td>
<td>Resolution</td>
</tr>
</tbody>
</table>
- **Example:** Convert each of the following arguments into logical notation using the suggested variables. Then provide a formal proof.
 - “if my computations are correct and I pay the electric bill, then I will run out of money. If I do not pay the electric bill, the power will be turned off. Therefore, if I do not run out of money and the power is still on, then my computations are incorrect”.

 \[(c, b, r, p)\]

- Let
 - \(c := “my computations are correct”\)
 - \(b := “I pay the electric bill”\)
 - \(r := “I run out of money”\)
 - \(p := “the power stays on”\)

- Then theorem is:
 - if \((c \land b) \implies r\) and \(\neg b \implies \neg p\), then \((\neg r \land p) \implies \neg c\)
Mathematical Induction

- Let \(p(m), p(m+1), \ldots, p(n) \) be a sequence of propositions. If
 \(p(m) \) is true, and
 \(p(k+1) \) is true whenever \(p(k) \) is true and \(m \leq k < n \),
 then all propositions are true.

- **Example:** for each positive integer \(n \), let \(p(n) \) be “\(n! > 2^n \),” a proposition that we claim is true for \(n \geq 4 \).
 To give a proof by induction, we verify that \(p(n) \) for \(n=4 \), and then show
 \(p(k+1) \) is true whenever \(4 \leq k \) and \(k! > 2^k \), then \((k+1)! > 2^{k+1} \).