Today

- Problem Formulation
 - Problem solving as state space search
- Definition of Graphs
 - Types of Graphs
- Shortest Path problems
 - Dijkstra’s Algorithm
Today

• **Problem Formulation**
 – Problem solving as state space search

• **Definition of Graphs**
 – Types of Graphs

• **Shortest Path problems**
 – Dijkstra’s Algorithm

Complex missions must carefully:

• Plan complex sequences of actions
• Schedule tight resources
• Monitor and diagnose behavior
• Repair or reconfigure hardware.

 때문 Most AI problems, like these, may be formulated as state space search.
Can the astronaut get its produce safely across the Martian canal?

- Astronaut + 1 item allowed in the rover.
- Goose alone eats Grain
- Fox alone eats Goose

Problem Solving as State Space Search

- **Formulate Goal**
 - State
 - Astronaut, Fox, Goose & Grain across river

- **Formulate Problem**
 - States
 - Location of Astronaut, Fox, Goose & Grain at top or bottom river bank
 - Operators
 - Move rover with astronaut & 1 or 0 items to other bank

- **Generate Solution**
 - Sequence of States
 - Move(goose,astronaut), Move(astronaut), . . .
Today

- Problem Formulation
 - Problem solving as state space search
- Definition of Graphs
 - Types of Graphs
- Shortest Path problems
 - Dijkstra’s Algorithm

Graph

- A graph is a generalization of the simple concept of a set of dots (called vertices or nodes) connected by links (called edges or arcs)
 - Example: graph with 6 vertices and 7 edges
Examples of Graphs

Planning Actions
(graph of possible states of the world)

Put C on B
Put C on A
Put C on B
Put C on A

Put B on C
Put C on A

Airline Routes

Graphs

• A graph \(G = (V, E) \) is a finite nonempty set of vertices and a set of edges

\[
\begin{align*}
V &= \{1, 2, 3\} \\
E &= \{(1, 2)\}
\end{align*}
\]

\[
\begin{align*}
V &= \{1, 2, 3, 4\} \\
E &= \{(1,2)(2,3)(1,4)(2,4)\}
\end{align*}
\]

• An empty graph is the graph whose edge set is empty

\[
\begin{align*}
V &= \{1\} \\
E &= \{\emptyset\}
\end{align*}
\]

• The null graph is the graph whose edge set and vertex set are empty

\[
\begin{align*}
V &= \{\emptyset\} \\
E &= \{\emptyset\}
\end{align*}
\]
Examples of Graphs

Graph **AirlineRoutes** is represented as the pair \((V,E)\)

\[V = \{\text{Bos, SFO, LA, Dallas, Wash DC}\} \]
\[E = \{(\text{SFO,Bos}), (\text{SFO,LA}), (\text{LA,Dallas}), (\text{Dallas,Wash DC})\} \]

Graphs

- **A loop** in a graph is an edge \(e\) in \(E\) whose endpoints are the same vertex.
- **A simple** graph is a graph with no loops, and there is at most one edge between any pair of vertices.

A simple graph with
\[V = \{1, 2, 3, 4, 5, 6\} \]
\[E = \{(1,2), (1,4), (2,3), (2,4), (3,5), (5,6), (4,5)\} \]
Graphs

- A **multigraph** has two or more edges that connect the same pair of vertices.
- A **cycle** is a path that begins and ends with the same vertex.
 - A cycle of length 1 is a loop.
 - $(1, 2, 3, 5, 4, 2, 1)$ is a cycle of length 6.

Vertices

- Two vertices, u and v in an undirected graph G are called **adjacent** (or neighbors) in G, if $\{(u,v)\}$ is an edge of G.

- The **degree** of a vertex in an undirected graph is the number of edges **incident** with it, except that a loop at a vertex contributes twice to the degree of that vertex.
Adjacency Matrix

- A finite graph is often represented by its **adjacent matrix**.
 - An entry in row I and column j gives the number of edges from the i^{th} to the j^{th} vertex.

![Adjacency Matrix Diagram]

Layout of Graphs

![Layout of Graphs Diagram]
Walks and Paths

- A **walk** is a sequence of vertices \((v_1, v_2, ..., v_k)\) in which each *adjacent* vertex pair is an edge.
- A **path** is a walk with no repeated vertices.

![Graph showing a walk and a path]

Walk (1,2,3,4,2) Path (1,2,3,4)

"The 1st problem in Graph Theory" Seven Bridges of Königsberg

- The city of Königsberg was set on the River Pregel, and included two large islands which were connected to each other and the mainland by seven bridges.
 - Was it possible to walk a route that crossed each bridge exactly once, and return to the starting point?

![Graph representing the Seven Bridges of Königsberg]
“The 1st problem in Graph Theory”
Seven Bridges of Königsberg

• An **Eulerian path** in a graph is a path that uses each edge precisely once.
 - If such path exists, the graph is called traversable

• Euler showed that an Eulerian cycle exists if and only if all vertices in the graph are of **even degree**.

Weighted Graph

• A **weighted** graph associates a value (weight) to every edge in the graph.
 - A **weight of a path** in a weighted graph is the sum of the weights of the traversed edges.

• **Directed** graph (digraph) is a graph with one-way edges
Today

- Problem Formulation
 - Problem solving as state space search
- Definition of Graphs
 - Types of Graphs
- **Shortest Path problems**
 - Dijkstra’s Algorithm

Shortest Path Problems

- The **shortest path** from v_1 to v_2
 - Is the path of the smallest weight between the two vertices
 - Shortest may be least number of edges, least total weight, etc.
 - The weight of that path is called the **distance** between them
Shortest Path Problems

• Example: the weight can be mileage, fares, etc.

Shortest Path Problems

• Dijkstra’s algorithm
 – Finds shortest path for a directed and connected graph G(V,E) which has non-negative weights.
 – Applications:
 • Internet routing
 • Road generation within a geographic region
 • ...

Dijkstra’s algorithm

Dijkstra’s Algorithm

• Dijkstra(G,w,s)

 Init_Source(G,s)
 S := empty set
 Q := set of all vertices

 while Q is not an empty set loop
 u := Extract_Min(Q)
 S := S union {u}
 for each vertex v which is a neighbor of u loop
 Relax(u,v,w)

Dijkstra’s Algorithm

• Init_Source(G,s)
 for each vertex v in V[G] loop
 d[v] := infinite
 previous[v] := 0
 d[s] := 0

• \textbf{v = Extract_Min(Q)} searches for the vertex \textbf{v} in the vertex set \textbf{Q} that has the least \textbf{d[v]} value. That vertex is removed from the set \textbf{Q} and then returned.

• Relax(u,v,w)
 if d[v] > d[u] + w(u,v) then
 d[v] := d[u] + w(u,v)
 previous[v] := u
Dijkstra’s Algorithm

V = \{a, b, c, d, s\}
E = \{(s,c), (c,d), (d,b), (b,d), (c,b), (a,c), (c,a), (a,b), (s,a)\}
S = \{\emptyset\}
Q = \{s, a, b, c, d\}

\[
\begin{align*}
&d = \\
&\text{prev} = \\
&\begin{bmatrix}
0 \\
\infty \\
\infty \\
\infty \\
\infty
\end{bmatrix}
\end{align*}
\]

Extract_Min (Q) → s
Neighbors of s = a, c
Relax (s,c,5)
Relax (s,a,10)
Dijkstra’s Algorithm

S = \{s, c\}
Q = \{a, b, d\}

Extract_Min (Q) → c
Neighbors of c = a, b, d
Relax (c,a,3)
Relax (c,b,9)
Relax (c,d,2)

prev =
\[
\begin{pmatrix}
0 & 8 \\
0 & s \\
0 & s \\
\end{pmatrix}
\]

\[
\begin{pmatrix}
c \\
c \\
c \\
\end{pmatrix}
\]

Dijkstra’s Algorithm

S = \{s, c, d\}
Q = \{a, b\}

Extract_Min (Q) → d
Neighbors of d = b
Relax (d,b,6)
Dijkstra’s Algorithm

S = {s, c, d, a}
Q = \{b\}

$$d = \begin{bmatrix} 0 \\ 8 \\ 13 \\ 5 \\ 9 \\ 5 \\ 7 \end{bmatrix} \rightarrow \begin{bmatrix} 0 \\ 8 \\ 5 \\ 9 \\ 7 \end{bmatrix}$$

prev = \[
\begin{bmatrix}
0 \\
c \\
d \\
s \\
c \\
c
\end{bmatrix} \rightarrow \begin{bmatrix}
0 \\
c \\
c \\
c \\
c \\
c
\end{bmatrix}
\]

Extract Min (Q) \(\rightarrow\) a
Neighbors of a = b, c
Relax (a, b, 1)
Relax (a, c, 3)

Dijkstra’s Algorithm

S = {s, c, d, a, b}
Q = \{\}

$$d = \begin{bmatrix} 0 \\ 8 \\ 9 \\ 5 \\ 7 \end{bmatrix} \rightarrow \begin{bmatrix} 0 \\ 8 \\ 9 \\ 5 \\ 7 \end{bmatrix}$$

prev = \[
\begin{bmatrix}
0 \\
c \\
d \\
c \\
c
\end{bmatrix} \rightarrow \begin{bmatrix}
0 \\
c \\
c \\
c \\
c
\end{bmatrix}
\]

Extract Min (Q) \(\rightarrow\) b
Neighbors of b = d
Relax (b, d, 4)