Concept Question

A graph $G(V, E)$ is a finite nonempty set of vertices and a set of edges

$G1(V1,E1)$ where $V1 = \{\}$, $E1 = \{\}$
$G2(V2,E2)$ where $V2 = \{a,b\}$, $E2 = \{\}$

1. Both G1 and G2 are Graphs

2. Only G1 is a Graph

3. Only G2 is a Graph

4. Neither G1 nor G2 are Graphs
Theorem: a mathematical statement that can be shown to be true
 - Can be proved using other theorems, axioms (statements which are given to be true) and rules of inference

Lemma: a pre-theorem or result needed to prove a theorem

Corollary: post-theorem or result which follows directly from a theorem

- Proposition
- Claim
- Remark

Why should we use trees?

Binary Search Tree
Trees

A **tree** is a connected undirected graph with no simple circuits.
- it cannot contain multiple edges or loops

Theorem: An undirected graph is a **tree** if and only if there is a unique simple path between any two of its vertices.

Which graphs are trees?

- **a)**
- **b)**
- **c)**
- **d)
Rooted Tree

- A directed graph G is called a **rooted tree** if there exists a vertex u so that for each $v \in V$, there is exactly one path between u and v
 - The in-degree of u is 0 and the in-degree of all other vertices is 1

- For an undirected graph, different choices of the root produces different trees

Choice of Root

Examples of Rooted Trees?
Internal Vertex

• A vertex that has children is called an **internal vertex**

• A graph $H(W, F)$ is a **subgraph** of a graph $G(V,E)$ iff $W \subseteq V$ and $F \subseteq E$

• The **subtree** at vertex v is the subgraph of the tree consisting of vertex v and its descendants and all edges incident to those descendants

Tree Properties

• The **parent** of a non-root vertex v is the unique vertex u with a directed edge from u to v.

• A vertex is called a **leaf** if it has no children.

• The **ancestors** of a non-root vertex are all the vertices in the path from root to this vertex.

• The **descendants** of vertex v are all the vertices that have v as an ancestor.
Tree Properties

- The **level** of vertex \(v \) in a rooted tree is the length of the unique path from the root to \(v \).
- The **height** of a rooted tree is the maximum of the levels of its vertices.

![Tree Diagram]

- Level of vertex \(f \) = 2
- Height of tree = 4

Binary Tree

- An **m-ary tree** is a rooted tree in which each internal vertex has *at most* \(m \) children.
- A rooted tree is called a **binary tree** if every internal vertex has *no more than* 2 children.
- The tree is called a **full** binary tree if every internal vertex has exactly 2 children.
Tree Properties

Theorem: A tree with \(N \) vertices has \(N-1 \) edges.

Theorem: There are at most \(2^H \) leaves in a binary tree of height \(H \).

Corollary: If a binary tree with \(L \) leaves is full and balanced, then its height is

\[
H = \lceil \log_2 L \rceil
\]

A **balanced** tree with height \(h \) is a \(m \)-ary tree with all leaves being at levels \(h \) or \(h-1 \).

Examples

- T1
- T2
- T3
Ordered Binary Tree

- An **ordered** rooted tree is a rooted tree where the children of each internal vertex are ordered.

- In an ordered binary tree, the two possible children of a vertex are called the **left child** and the **right child**, if they exist.

Example

```
     a
    / \  \
   b   c
  / \   /  \
 d  e  f  g
 / \  /  /  \
 h i j k l
```

- **Children of** `b`? `d, e`
- **Parent of** `b`? `a`
- **Ancestors of** `g`? `c, a`
- **Descendants of** `b`? `d, e, h, i`
- **Leafs**? `h, i, e, j, k, m`
- **Internal vertices**? `a, b, c, d, f, g`
- **Left child of** `g`? `k`
- **Right child of** `g`? `l`
Traversals Algorithms

- A **traversal algorithm** is a procedure for **systematically visiting every vertex** of an ordered binary tree.

- Tree traversals are defined recursively.

- Three commonly used traversals are:
 - **preorder**
 - **inorder**
 - **postorder**

PREORDER Traversal Algorithm

Let T be an ordered binary tree with root R.

If T has only R **then**

R is the **preorder** traversal.

Else

Let T₁, T₂ be the left and right subtrees at R.

Visit R.

Traverse T₁ in **preorder**.

Traverse T₂ in **preorder**.
Record Definition

```plaintext
type Node;
type Nodeptr is access Node;
type Node is record
    Element   : Elementtype;
    Left_Child : Nodeptr;
    Right_Child : Nodeptr;
end record;
```

INORDER Traversal Algorithm

Let T be an ordered binary tree with root R

If T has only R **then**

- R is the *inorder* traversal

Else

- Let T_1, T_2 be the left and right subtrees at R
- Traverse T_1 in *inorder*
- Visit R
- Traverse T_2 in *inorder*
POSTORDER Traversal Algorithm

Let T be an ordered binary tree with root R

If T has only R then
 R is the postorder traversal
Else
 Let T₁, T₂ be the left and right subtrees at R
 Traverse T₁ in postorder
 Traverse T₂ in postorder
 Visit R

Binary Expression Tree

A special kind of binary tree in which:

- Each leaf node contains a single operand
- Each inner vertex contains a single binary operator
- The left and right subtrees of an operator node represent sub-expressions that must be evaluated before applying the operator at the root of the subtree.
Binary Expression Tree

\[
\begin{align*}
\text{INORDER TRAVERSAL:} & \quad 8 - 5 \, \text{has value 3} \\
\text{PREORDER TRAVERSAL:} & \quad - 8 5 \\
\text{POSTORDER TRAVERSAL:} & \quad 8 5 -
\end{align*}
\]

Binary Expression Tree

\[
(4 + 2) * 3 = 18
\]
Levels Indicate Precedence

- When a binary expression tree is used to represent an expression, the levels of the nodes in the tree indicate their relative precedence of evaluation.

- Operations at higher levels of the tree are evaluated later than those below them. The operation at the root is always the last operation performed.
Binary Expression Tree

Infix: \((8 - 5) \ast ((4 + 2) / 3)\)

Prefix: \(* - 8 5 / + 4 2 3\)

Postfix: \(8 5 - 4 2 + 3 / *\)

Trees - Glossary

- Perfectly balanced tree
- Height balanced tree
- M-ary tree

- Inner Vertex
- Root
- Leaf
- Parent of B and C
- Child of A
- B and C are siblings