Today – More about Trees

- Spanning trees
 - Prim’s algorithm
 - Kruskal’s algorithm

- Generic search algorithm
 - Depth-first search example
 - Handling cycles
 - Breadth-first search example
Trees

- A tree is a connected graph without cycles
- A connected graph is a tree iff it has N vertices and $N-1$ edges
- A graph is a tree iff there is one and only one path joining any two of its vertices

Spanning Trees

- A Spanning tree of a graph G, is a tree that includes all the vertices from G. The resulting spanning tree is not unique

Minimum Spanning Tree

- Prim’s Algorithm
 - Finds a subset of the edges (that form a tree) including every vertex and the total weight of all the edges in tree is minimized
 - Choose starting vertex
 - Create the Fringe Set
 - Loop until the MST contains all the vertices in the graph
 - Remove edge with minimum weight from Fringe Set
 - Add the edge to MST
 - Update the Fringe Set

Prim – Initialization

- Pick any vertex x as the starting vertex
- Place x in the Minimum Spanning Tree (MST)
- For each vertex y in the graph that is adjacent to x
 - Add y to the Fringe Set
- For each vertex y in the Fringe Set
 - Set weight of y to weight of the edge connecting y to x
 - Set x to be parent of y
Prim – Body

While number of vertices in MST < vertices in the graph

Find vertex \(y \) with minimum weight in the Fringe Set

Add vertex and the edge \(x,y \) to the MST

Remove \(y \) from the Fringe Set

For all vertices \(z \) adjacent to \(y \)

If \(z \) is not in the Fringe Set

Add \(z \) to the Fringe Set

Set parent to \(y \)

Set weight of \(z \) to weight of the edge connecting \(z \) to \(y \)

Else

If Weight(\(y,z \)) < Weight(\(z \)) then

Set parent to \(y \)

Set weight of \(z \) to weight of the edge connecting \(z \) to \(y \)

Minimum Spanning Tree

- **Kruskal’s Algorithm**
 - Finds a minimum spanning tree for a connected weighted graph

 - Create a set of trees, where each vertex in the graph is a separate tree
 - Create set \(S \) containing all edges in the graph
 - While \(S \) not empty
 - Remove edge with minimum weight from \(S \)
 - if that edge connects two different trees, then add it to the forest, combining two trees into a single tree
 - Otherwise discard that edge
More about Trees

• Spanning trees
 – Prim’s algorithm
 – Kruskal’s algorithm

• Generic search algorithm
 – Depth-first search example
 – Handling cycles
 – Breadth-first search example

Depth First Search (DFS)

Idea:
• Explore descendants before siblings
• Explore siblings left to right

Where do we place the children on the queue?
• Assume we pick first element of Q
• Add path extensions to the Q

Simple Search Algorithm

Let Q be a list of partial paths,
Let S be the start node and
Let G be the Goal node.

1. Initialize Q with partial path (S)
2. If Q is empty, fail. Else, pick a partial path N from Q
3. If head(N) = G, return N (goal reached!)
4. Else:
 a) Remove N from Q
 b) Find all children of head(N) and create all the one-step extensions of N to each child.
 c) Add all extended paths to Q
 d) Go to step 2.

Depth-First

Pick first element of Q; Add path extensions to front of Q
Simple Search Algorithm

Let Q be a list of partial paths,
Let S be the start node and
Let G be the Goal node.

1. Initialize Q with partial path (S)
2. If Q is empty, fail. Else, pick a partial path N from Q
3. If head(N) = G, return N (goal reached!)
4. Else:
 a) Remove N from Q
 b) Find all children of head(N) and create all the one-step extensions of N to each child.
 c) Add all extended paths to Q
 d) Go to step 2.

Depth-First

Pick first element of Q; Add path extensions to front of Q

<table>
<thead>
<tr>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
</tbody>
</table>

Added paths in blue
Simple Search Algorithm

Let Q be a list of partial paths,
Let S be the start node and
Let G be the Goal node.

1. Initialize Q with partial path (S)
2. If Q is empty, fail. Else, pick a partial path N from Q
3. If head(N) = G, return N (goal reached!)
4. Else:
 a) Remove N from Q
 b) Find all children of head(N) and create all the one-step extensions of N to each child.
 c) Add all extended paths to Q
 d) Go to step 2.

Depth-First

Pick first element of Q; Add path extensions to front of Q

<table>
<thead>
<tr>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>(S)</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>(A S) (B S)</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>(C A S) (D A S) (B S)</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
</tbody>
</table>

Added paths in blue
Depth-First

Pick first element of Q; Add path extensions to front of Q

```
<table>
<thead>
<tr>
<th>Q</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (S)</td>
<td></td>
</tr>
<tr>
<td>2 (A S) [B S]</td>
<td></td>
</tr>
<tr>
<td>3 (C A S) [D A S] [B S]</td>
<td></td>
</tr>
<tr>
<td>4 (D A S) [B S]</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>
```

Added paths in blue

Depth-First

Pick first element of Q; Add path extensions to front of Q

```
<table>
<thead>
<tr>
<th>Q</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (S)</td>
<td></td>
</tr>
<tr>
<td>2 (A S) [B S]</td>
<td></td>
</tr>
<tr>
<td>3 (C A S) [D A S] [B S]</td>
<td></td>
</tr>
<tr>
<td>4 (D A S) [B S]</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>
```

Added paths in blue
Simple Search Algorithm

Let Q be a list of partial paths, Let S be the start node and Let G be the Goal node.

1. Initialize Q with partial path (S)
2. If Q is empty, fail. Else, pick a partial path N from Q
3. If head(N) = G, return N (goal reached!)
4. Else:
 a) Remove N from Q
 b) Find all children of head(N) and create all the one-step extensions of N to each child.
 c) Add all extended paths to Q
 d) Go to step 2.

Depth-First

Pick first element of Q; Add path extensions to front of Q

Depth-First

Pick first element of Q; Add path extensions to front of Q

Depth-First

Pick first element of Q; Add path extensions to front of Q
More about Trees

- Spanning trees
 - Prim’s algorithm
 - Kruskal’s algorithm

- Generic search algorithm
 - Depth-first search example
 - Handling cycles
 - Breadth-first search example

Issue: Starting at S and moving top to bottom, will depth-first search ever reach G?

Depth-First

Effort can be wasted in more mild cases

<table>
<thead>
<tr>
<th>Q</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(S)</td>
</tr>
<tr>
<td>2</td>
<td>(A S) (B S)</td>
</tr>
<tr>
<td>3</td>
<td>(C A S) (D A S) (B S)</td>
</tr>
<tr>
<td>4</td>
<td>(D A S) (B S)</td>
</tr>
<tr>
<td>5</td>
<td>(C D A S) (G D A S) (B S)</td>
</tr>
<tr>
<td>6</td>
<td>(G D A S) (B S)</td>
</tr>
</tbody>
</table>

- C visited multiple times
- Multiple paths to C, D & G

How Do We Avoid Repeat Visits?

Idea:

- Keep track of nodes already visited.
- Do not place visited nodes on Q.

Does this maintain correctness?

- Any goal reachable from a node that was visited a second time would be reachable from that node the first time.

Does it always improve efficiency?

- Guarantees each node appears at most once at the head of a path in Q.
Simple Search Algorithm

Let Q be a list of partial paths,
Let S be the start node and
Let G be the Goal node.

1. Initialize Q with partial path (S) as only entry; set Visited = ()
2. If Q is empty, fail. Else, pick some partial path N from Q
3. If head(N) = G, return N (goal reached!)
4. Else
 a) Remove N from Q
 b) Find all children of head(N) not in Visited and create all the one-step extensions of N to each child.
 c) Add to Q all the extended paths;
 d) Add children of head(N) to Visited
 e) Go to step 2.

More about Trees

• Spanning trees
 – Prim’s algorithm
 – Kruskal’s algorithm

• Generic search algorithm
 – Depth-first search example
 – Handling cycles
 – Breadth-first search example

Breadth First Search (BFS)

Idea:
• Explore relatives at same level before their children
• Explore relatives left to right

Where do we place the children on the queue?
• Assume we pick first element of Q
• Add path extensions to ? of Q

Breadth-First

Pick first element of Q; Add path extensions to end of Q
Breadth-First
Pick first element of Q; Add path extensions to end of Q

<table>
<thead>
<tr>
<th>Q</th>
<th>Visited</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(S)</td>
</tr>
<tr>
<td>2</td>
<td>(A S) (B S)</td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

Breadth-First
Pick first element of Q; Add path extensions to end of Q

<table>
<thead>
<tr>
<th>Q</th>
<th>Visited</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(S)</td>
</tr>
<tr>
<td>2</td>
<td>(A S) (B S)</td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>
Breadth-First
Pick first element of Q; Add path extensions to end of Q

<table>
<thead>
<tr>
<th>Q</th>
<th>Visited</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(S) S</td>
</tr>
<tr>
<td>2</td>
<td>(A S) (B S) A,B,S</td>
</tr>
<tr>
<td>3</td>
<td>(B S) (C A S) (D A S) C,D,B,A,S</td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

Depth First Search (DFS)
Depth-first: Add path extensions to front of Q
Pick first element of Q

Breadth First Search (BFS)
Breadth-first: Add path extensions to back of Q
Pick first element of Q

Summary
- Most problem solving tasks may be formulated as state space search.
- Mathematical representations for search are graphs and search trees.
- Depth-first and breadth-first search may be framed, among others, as instances of a generic search strategy.
- Cycle detection is required to achieve efficiency and completeness.
• Document code
 – What it is doing
 – How it is doing it
 – What it is not doing (detailed status)

• Test run code

• Zip code