Drag coefficients of various 3-dimensional bodies (40) at R' numbers between 10^4 and 10^6. Note: (*) tested on wind-tunnel floor.

Drag coefficient (41) of 2-dimensional shapes (between walls) at R between 10^4 and 10^6. Note: (+) in subcritical flow.

Information on rear-side pressure of plates:
a) On disks and small-aspect-ratio plates see: NACA (36, a); AVA Ergebnisse IV; reference (40,i).
b) On plates between walls see: (12), (35,a) and (40,f).

Experimental results on three-dimensional bodies:
b) NACA, Cup Anemometer, Tech Rpt 513 (1935).
c) AVA, Hemispherical Bodies, Ergebnisse IV (1932).
d) Eiffel, Recherches a Tour Eiffel, Paris 1907.
e) Hemispherical Cup at $R_s = 2 \times 10^5$, ARC RM 712 (1919).
f) Irminger and Nokkentved, Elementary Bodies and Buildings, Kopenhagen 1930 and 1936; Translated by Jarvis.

Sections (tested between plates or walls):
a) Lindsey, Simple Shapes, NACA T. Rpt 619 (1940).
c) Interference Between Struts, NACA T. Rpt 468 (1933).
d) Delany-Sorensen, Various Shapes, NACA T. Note 3038.
e) AVA Göttingen, Ergebnisse II (1923) and III (1926).
f) Junkers Wind-Tunnel Result on Angle Profile.
g) Reported by Barth, Zt.Flugwissen 1954 p.309.

Free-streamline (cavitation) theory:
a) Kirchhoff, Free Jet Theory, Crelle 1869 (see Lamb).
b) Bobyleff, Russian Phys.-Chem. Society 1881 (see Lamb).
d) Reichardt, Laws of Cavities, German ZWB UM 6628.

Neef, Dive Brakes, Fieseler Tunnel Rpt 22 (1941).

Figure by MIT OCW.