Lecture F14 Mud: Normal Shock Waves, Speed of Sound

1. **What does “h.o.t.” mean?** (1 student)
 Higher Order Terms. Stuff like \(dp \, da, \, du^2 \), which become negligible relative to \(dp \) or \(da \) in the infinitesimal limit.

2. **What are the small-shock equations used?** (1 student)
 For determining the speed of sound \(a \), like we did in class. Also for describing the propagation of sound waves in general.

3. **What in the infinitesimal-wave analysis becomes invalid for finite waves?** (1 student)
 The assumption of isentropic flow becomes invalid. Also, the speed of sound \(a \) is the speed of weak waves. Finite shock waves travel at a greater speed \(V_s > a \).

4. **Confused about different frames when looking at the shock.** (1 student)
 Tough to go over without a board. Maybe in recitation.

5. **Does the bow shock cause high drag on a blunt nose at supersonic speeds?** (1 student)
 Yes! That’s why supersonic airplanes have pointy noses. Re-entry vehicles are blunt for several reasons, one of them being the fact that high drag is desirable for slowing down during re-entry.

6. **What does “breaking the sound barrier” mean?** (1 student)
 Not much, nowadays. Before 1945, this “barrier” was considered as a technological barrier, rather than something the pilot had to “break”.

7. **No mud** (4 students)