KEY CONCEPTS FOR MATERIALS AND STRUCTURES

Handout for Spring Term Quizzes

Basic modeling process for 1-D structural members
1. Idealize/model – make assumptions on geometry, load/stress and deformations
2. Apply governing equations (e.g. equations of elasticity)
3. Invoke known boundary conditions to derive constitutive relations for structure (load-deformation, load-internal stress etc.)

Analytical process for 1-D structural members
1. Idealize/model – assumptions on geometry, load/stress and deformations
2. Draw free body diagram
3. Apply method of sections to obtain internal force/moment resultants
4. Apply structural constitutive relations to relate force/moment resultants to
 a) internal stresses
 b) deformations (usually requires integration – invoking boundary conditions)

Elastic bending formulae

Based on convention for positive bending moments and shear forces:

\[q = \frac{dS}{dx}, \quad S = \frac{dM}{dx} \]

Bending of a symmetric cross section about its neutral axis (mid plane for a cross-section with two orthogonal axes of symmetry).

\[\sigma_{xx} = -\frac{Mz}{I}, \quad M = EI \frac{d^2w}{dx^2}, \quad \sigma_{xz} = -\frac{SQ}{lb} \]

where \(\sigma_{xx} \) is the axial (bending) stress, \(M \) is the bending moment at a particular cross-section, \(I \) is the second moment of area about the neutral axis, \(z \) is the distance from the neutral axis, \(E \) is the Young’s modulus of the material, \(w \) is the deflection, \(x \) is the axial coordinate along the beam, \(\sigma_{xz} \) is the shear stress at a distance \(z \) above the neutral axis, \(S \) is the shear force at a particular cross section, \(Q \) is the first moment of area of the cross-section from \(z \) to the outer ligament, \(b \) is the width of the beam at a height \(b \) above the neutral axis.

Second moment of area \[I = \int z^2 dA \]

Standard solutions:

- Rectangular area, breadth \(b \), depth \(h \): \[I = \frac{bh^3}{12} \] Solid circular cross-section, radius \(R \): \[I = \frac{\pi R^4}{4} \]

- Isosceles Triangle, depth \(h \), base \(b \): \[I = \frac{bh^3}{36} \] (note centroid is at \(h/3 \) above the base)

Parallel axis theorem:
If the second moment of area of a section, area A, about an axis is I then the second moment of area I' about a parallel axis, a perpendicular distance d away from the original axis is given by:

$$I' = I + Ad^2$$

First moment of area
The first moment of area of a section between a height z from the neutral plane and the top surface (outer ligament) of the section is given by:

$$Q = \frac{h}{2} \int z dA$$

Standard solutions for deflections of beams under commonly encountered loading

<table>
<thead>
<tr>
<th>Configuration</th>
<th>End slope, dw/dx (x=L)</th>
<th>End deflection, w(L)</th>
<th>Central deflection, w(L/2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\frac{ML}{EI}$</td>
<td>$\frac{ML^2}{2EI}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\frac{PL^2}{2EI}$</td>
<td>$\frac{PL^3}{3EI}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\frac{q_0 L^3}{6EI}$</td>
<td>$\frac{q_0 L^4}{8EI}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\frac{PL^2}{16EI}$</td>
<td>$\frac{PL^3}{48EI}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\frac{q_0 L^3}{24EI}$</td>
<td></td>
<td>$\frac{5q_0 L^4}{384EI}$</td>
</tr>
</tbody>
</table>
Singularity functions

Integration of singularity functions:
\[\int_{-\infty}^{x} (x-a)^n \, dx = \frac{(x-a)^{n+1}}{n+1}, \quad n \geq 0 \]

\[\int_{-\infty}^{x} (x-a)_-^2 \, dx = (x-a)_{-1} \]

\[\int_{-\infty}^{x} (x-a)_-^1 \, dx = (x-a)^0 \]

Torsion of round shafts

An internal torque resultant, T, generates a circumferential shear stress, \(\tau \), at a radius \(r \), and twist per unit length, \(\frac{d\phi}{dx} \), where:

\[\tau = \frac{Tr}{J} \]

\[T = GJ \frac{d\phi}{dx} \]

G is the shear modulus of the material and J is the second polar moment of area given by:

\[J = \int_{A} r^2 \, dA \]

For a solid circular cross section, radius R:

\[J = \frac{\pi R^4}{2} \]

For a thin walled circular tube, radius R, thickness t:

\[J = 2\pi R^3 t \]
Elastic buckling of columns

The general governing equation for the transverse (buckling), w, of a uniform column of bending stiffness EI, under an axial load P is: \(\frac{d^2w}{dx^2} + \frac{P}{EI} x = M_0 \). Where \(M_0 \) is a constant.

General solutions are of the form:
\[
w = A\sin\left(\frac{P}{EI} x\right) + B\cos\left(\frac{P}{EI} x\right) + Cx + D.
\]

In general the elastic critical load, \(P_{cr} = cP_E \), where the factor \(c \) depends on the boundary conditions and the order of the buckling mode, and \(P_E \) is the Euler Load for a perfect, pin ended column of length, \(L \) buckling into a half sine wave given by:
\[
P_E = \frac{\pi^2 EI}{L^2}.
\]

Yield and Plasticity of Metals

Uniaxial loading of a bar, initial length \(\ell_0 \), cross-sectional area \(A_0 \) past yield point: Define nominal, true stress and nominal and true strain:
\[
\sigma_n = \frac{P}{A_0}, \quad \sigma_t = \frac{P}{A}, \quad \varepsilon_n = \frac{\Delta \ell}{\ell_0} = \frac{\ell - \ell_0}{\ell_0}, \quad \varepsilon_t = \int \frac{d\ell}{\ell_0} = \ln \left(\frac{\ell}{\ell_0} \right)
\]

Since volume is conserved: \(A_0 \ell_0 = A \ell \) obtain: \(\sigma_t = \sigma_n \left(1 + \varepsilon_n \right) \) and \(\varepsilon_t = \ln \left(1 + \varepsilon_n \right) \)

Work of deformation per unit volume: \(U = \int_{\varepsilon_{n1}}^{\varepsilon_{n2}} \sigma_n d\varepsilon_n = \int_{\varepsilon_{t1}}^{\varepsilon_{t2}} \sigma_t d\varepsilon_t \)

Elastic Strain Energy (for linear elastic deformation): \(U = \frac{\sigma_n^2}{2E} \)

For multiaxial stress states models for yield:

Tresca: \(\max \left(|\sigma_I - \sigma_{II}|, |\sigma_{II} - \sigma_{III}|, |\sigma_{III} - \sigma_I| \right) \geq \sigma_y \)

Von Mises: \(\left(\sigma_I - \sigma_{II} \right)^2 + \left(\sigma_{II} - \sigma_{III} \right)^2 + \left(\sigma_{III} - \sigma_I \right)^2 \geq 2\sigma_y^2 \)

Where \(\sigma_I \) etc are the principal stresses and \(\sigma_y \) is the uniaxial yield strength

Hardness \(H = \frac{F_{\text{indentation}}}{A_{\text{indentation}}} = 3\sigma_y \)

In a uniaxial tension test, necking occurs when: \(\frac{d\sigma_t}{d\varepsilon_t} = \sigma_t \)
Transformation of Stress and Strain via Mohr’s Circle:

Mohr's circle is a geometric representation of the 2-D transformation of stresses.

Construction: Given the state of stress shown below for an infinitesimal element, with the following definition (by Mohr) of positive and negative shear:

"Positive shear would cause a clockwise rotation of the element about the element center."

Thus: \(\sigma_{21} \) (below) is plotted positive \(\sigma_{12} \) (below) is plotted negative:

Principal stresses correspond to points G, F. Max shear at H, H’.

Note that angles are doubled on the Mohr’s circle relative to the physical problem.

Note that a Mohr’s circle can only be drawn stresses in a plane perpendicular to a principal direction.
Strengthening Mechanisms

Precipitate Strengthening: \[\Delta \tau_y = \frac{Gb}{L} \] where G = shear modulus, b = Burgers vector, L = particle spacing

Solid Solution strengthening: \[\Delta \tau_y \propto \sqrt{c} \] where c = concentration of alloying elements

Work Hardening: \[\Delta \tau_y \propto \gamma^m \] where \(\gamma \) = shear strain, \(m \) = exponent (0.01-0.5)

Grain Boundary Effect: \[\Delta \tau_y \propto \frac{1}{\sqrt{d}} \] where d = grain size

Fracture and Fatigue

Fast fracture occurs when: \[dW \geq dU_{el} + G_c dA \]
where \(W \) = external work, \(U_{el} \) = elastic strain energy, \(G_c \) is the material’s toughness and A is the area of crack surface.

Can also be written: \(K \geq K_c \) Where \(K_c \) is the fracture toughness and K is the stress intensity factor given by:
\[K = Y\sigma \sqrt{\pi a} \]
where \(Y \) is a factor which depends on the crack and component shape (≈1), a is the crack length and \(\sigma \) the applied stress

For many metals fatigue crack growth is of the form:
\[\frac{da}{dN} = A\Delta K^n \]
where A and n are empirically determined constants.