Partial Fraction Expansions I

Find the partial fraction expansion of the transform

\[G(s) = \frac{4s + 10}{s^2 + 6s + 8} \]

My confidence that I have the correct answer is:

1. 100%
2. 80%
3. 60%
4. 40%
5. 20%
6. 0%
Partial Fraction Expansions I

The partial fraction expansion of

\[G(s) = \frac{4s + 10}{s^2 + 6s + 8} \]

is

\[G(s) = \frac{1}{s + 2} + \frac{3}{s + 4} \]

My answer

1. Was completely correct
2. Was mostly correct, with one or two minor errors
3. Had many errors
4. Was completely incorrect
Partial Fraction Expansions II

Find the partial fraction expansion of the transform

\[G(s) = \frac{6s + 10}{s^2 + 4s + 3} \]

My confidence that I have the correct answer is:

1. 100%
2. 80%
3. 60%
4. 40%
5. 20%
6. 0%
Partial Fraction Expansions II

The partial fraction expansion of

\[G(s) = \frac{6s + 10}{s^2 + 4s + 3} \]

is

\[G(s) = \frac{2}{s + 1} + \frac{4}{s + 3} \]

My answer

1. Was completely correct
2. Was mostly correct, with one or two minor errors
3. Had many errors
4. Was completely incorrect
Partial Fraction Expansions III

Find the partial fraction expansion of the transform

\[G(s) = \frac{2s + 2}{s^2 + 2s + 2} \]

My confidence that I have the correct answer is:

1. 100%
2. 80%
3. 60%
4. 40%
5. 20%
6. 0%
Partial Fraction Expansions III

The partial fraction expansion of

\[G(s) = \frac{2s + 2}{s^2 + 2s + 2} \]

is

\[G(s) = \frac{1}{s + 1 + j} + \frac{1}{s + 1 - j} \]

My answer

1. Was completely correct
2. Was mostly correct, with one or two minor errors
3. Had many errors
4. Was completely incorrect