Lecture S8 Muddiest Points

General Comments

Today, we did a little review of Laplace transforms, and saw how to use them in the analysis of systems. The most confusion seems to be about the region of convergence.

Responses to Muddiest-Part-of-the-Lecture Cards

(17 cards)

1. **You always want us to out the region of convergence, but what does it mean to converge or not converge? (1 student)** Consider the LT of \(g(t) = e^{at}\sigma(t) \). The LT integral is given by
 \[
 G(s) = \int_0^\infty e^{at}e^{-st} \, dt = \int_0^\infty e^{(a-s)t} \, dt
 \]
 As \(t \to \infty \), the integrand either goes to zero or goes to infinity, depending on whether \(a-s \) is negative or positive. If \(a-s \) is negative, the integrand goes to zero exponentially fast, which means the integral is finite (there is finite are under the graph of \(e^{(a-s)t} \)), so we say the integral converges. if \(a-s \) is positive, the integrand blows up, so the integral is infinite— it doesn’t converge. So the LT is only well-defined for \(s > a \).

2. **Could you explain more clearly what the [pole-zero and region of convergence plot] means? (1)** The LT integral converges for some values of \(s \). The hashed region in the plot represents the complex values of \(s \) for which the integral converges. The x’s on the plot represent the poles of the system. The o’s on the plot represent the zeros of the system.

3. **Confused as to why \(\text{Re}[s] > 0 \) in most cases. It seems to have something to do with the value in the exponential. (1)** For unilateral LTs, the region of convergence is always of the form \(\text{Re}[s] > \sigma_0 \), for some \(\sigma_0 \). The reason is that if the integral converges for some value of \(s \), the integrand of the LT integral will get smaller if the real part of \(s \) is increased. That is, the factor \(e^{-st} \) gets smaller as \(s \) gets more positive.

4. **How do you write the region of convergence for**
 \[
 G(s) = \mathcal{L}[e^{-at}] = \frac{1}{s+a}
 \]
 Should it be \(s > a \) or \(s > -a \)? (1) \(s > -a \). The pole of \(G(s) \) is where the denominator is zero, namely, at \(s = -a \). The region of convergence is to the right of the pole.

5. **What’s a pole? (1)** The pole of a transfer function \(G(s) \) are those values of \(s \) for which \(G(s) = \infty \). This happens whenever the denominator of \(G(s) \) is zero. Actually, my definition of a pole above is too sloppy to be correct, but will do for now.

6. **Often, the differential equations don’t come with initial values. Should we just solve with them unknown? (1)** No. Usually, there will be a specific right thing to do, and it won’t involve solving with unknown ICs. For example, when you find the impulse response, the ICs are implicitly zero.
7. For a system with impulse response \(g(t) = \sigma(t) \), how does that lead to

\[
y(t) = \int_{-\infty}^{t} u(\tau) \, d\tau
\]

(1) The response to arbitrary input \(u(t) \) is

\[
y(t) = g(t) * u(t) = \int_{-\infty}^{\infty} \sigma(t - \tau) u(\tau) \, d\tau = \int_{-\infty}^{t} u(\tau) \, d\tau
\]

since \(\sigma(t - \tau) = 1 \) for \(\tau < t \).

8. Why is it that the integral

\[
\int g
\]

sometimes instead of (from last lecture)

\[
\int g'
\]

(1) I have to admit that I don’t understand your question. Please ask again at next lecture, or at the recitation.

9. Please do some real examples (not RLC circuits). (1) Although RLC circuits are real examples, I take your point, and will try.

10. No mud. (8)