Problem Set 11

Instructions: Do each problem on separate sheets of paper, and staple the sheets for each problem together. Write your name on each problem.

Problem 1

Do FP&E Problem 8.1

Problem 2

Do FP&E Problem 8.2

Problem 3

Do FP&E Problem 8.3

Problem 4

Note: This problem will be due with Problem Set 12. It is being presented here so that you can begin working on it, and consult me for ideas. Time permitting, I will demo the best controllers the last week of class.

You are to design a control system (in continuous time) for the one degree of freedom helicopter demo in class. The transfer function for the plant is given by

\[G(s) = \frac{s + 43.8}{(s + 2.26)(s + 0.814)(s - 0.639)} \]

where the input ranges from -1 to 1, and the output ranges from -0.5 to 0.5. You are to design a control system for the system, that best meets the desired control objectives. In particular, you are to choose \(K_1 \), \(K_2 \), and \(K_3 \) for the following block diagram:

Note that choosing \(K_2(s) = 0 \), \(K_3(s) = 1 \), and \(K_1(s) = K(s) \) results in the traditional unity feedback controller. \(K_2(s) \) is used for minor loop feedback. \(K_3(s) \) may be used to pre-filter the reference, to shape the step response of the system. The reference input will be a step input of magnitude 0.05. Design the controller to optimize the following performance metrics:

1. The step response should be as fast as possible, given the other constraints below.
2. There should be minimal overshoot. The overshoot should not exceed 5%.
3. The magnitude of the control signal should not exceed 0.40.
4. The control system should be Type 1, so that the steady error due to a constant disturbance (such as would result from a change in the weight of the helicopter) are zero.
5. In addition, undesirable behaviors, such as long tails in the step response, are to be avoided.

I will judge the results based on these criteria, and present the best results in class.

Your results should be submitted online as a MATLAB m-file. Executing the m-file should leave in the workspace the three controller transfer functions, named k_1, k_2, and k_3. Name the file xyz.m, where your initials are xyz (in lowercase). For example, your file might look something like:

```matlab
% srh.m
% Controller for the helicopter demo by
% Steven R. Hall
s = tf([1 0],1);
k1 = 10*(1+s/1)/(1+s/10);
k2 = tf(0,1);
k3 = tf(1,1);
```