Problem 1.

Sketch the root locus for \(L(s) = \frac{s}{(s+1)(s+4)}. \)
\(\phi_R = \frac{180^\circ + 360^\circ}{2} = 180^\circ, \) open loop pole at \(s = -1, s = -4. \) Zero at \(s = 0. \)

Problem 2.

Sketch the root locus for \(L(s) = \frac{s}{(s-1)(s-4)}. \)
\(\phi_R = \frac{180^\circ + 360^\circ}{2} = 180^\circ, \) open loop pole at \(s = 1, s = 4. \) Zero at \(s = 0. \)

To find departure/arrival point from real axis, use characteristic equation:

\[
1 + kL(s) = 0 \rightarrow 1 + \frac{ks}{s^2 - 5s + 4} = 0
\]
\[s^2 + (k - 5)s + 4 = 0 \]

Use quadratic formula

\[
\frac{-(k - 5)}{2} \pm \frac{\sqrt{(k - 5)^2 - 16}}{2}
\]

The \(\frac{\sqrt{(k - 5)^2 - 16}}{2} \) term may be real or imaginary. If we sent it equal to zero and solve for \(k \), that is the gain at which the transition from real to imaginary occurs.

\[
\frac{\sqrt{(k - 5)^2 - 16}}{2} = 0
\]

\[
(k - 5)^2 = 15
\]

\[
|k - 5| = 4
\]

\[
\rightarrow k = 1, 9
\]

Now need to put \(k \) values back into characteristic equation, and solve for \(s \). This will tell us the location of the roots.

\(k = 1 \rightarrow s^2 - 4s + 4 = 0 \), two roots at \(s = 2 \), \(k = 9 \rightarrow s^2 + 4s + 4 = 0 \).

Two roots at \(s = -2 \).

When \(k = 5 \), the real part of the quadratic equation is zero, so this is the value of \(k \) for when the locus intersects the imaginary axis. Plugging \(k = 5 \) into characteristic equation:

\(s^2 + 4 = 0 \rightarrow \text{Intersects imaginary axis at } s = \pm 2j. \)
Problem 3.

Sketch the locus of \(L(s) = \frac{s+3}{(s+1)(s+2)(s+20)} \)

\[\alpha = \frac{-1-2+3-20}{3-1} = -10 \]

If the pole at \(s = -20 \) were closer to the zero, the locus would look more like