Topic #23

16.30/31 Feedback Control Systems

Analysis of Nonlinear Systems

- Anti-windup

- Notes developed in part from 16.30 Estimation and Control of Aerospace Systems, Lecture 21: Lyapunov Stability Theory by Prof. Frazzoli
Nonlinear System Analysis

- Example: Car cruise control

\[\frac{dv}{dt} = F_{\text{eng}} + F_{\text{aero}} + F_{\text{frict}} + F_g, \]

where

\[F_{\text{aero}} = -\frac{1}{2} \rho C_d A v \cdot |v|, \]
\[F_g = -mg \sin(\theta), \]
\[F_{\text{frict}} = -mg C_r \cos(\theta) \text{sgn}(v). \]

- Engine model

![Engine torque vs angular velocity and velocity](image)

- Engine torque (at full throttle): \(T_{\omega} = T_m \left(1 - \beta \left(\frac{\omega}{\omega_m} - 1 \right)^2 \right), \)

where \(\omega = \frac{n}{r} v = \alpha_n v, \) \(n \) is gear ratio, and \(r \) wheel radius.

- The engine driving force can hence be written as

\[F_{\text{eng}} = \alpha_n T(\alpha_n v) u, \quad 0 \leq u \leq 1. \]

1The example is taken from Åström and Murray: Feedback Systems, 2008
Jacobian Linearization

- Any (feasible) speed corresponds to an equilibrium point.
- Choose a reference speed $v_{ref} > 0$, and solve for $dv/dt = 0$ with respect to u, assuming a horizontal road ($\theta = 0$).

\[
0 = \alpha n T(\alpha n \bar{v})\bar{u} - \frac{1}{2} \rho C_d A \bar{v}^2 - mg C_r
\]

i.e.,

\[
\bar{u} = \frac{\frac{1}{2} \rho C_d A \bar{v}^2 + mg C_r}{\alpha n T(\alpha n \bar{v})}.
\]

- Linearized system ($\xi = v - \bar{v}, \eta = u - \bar{u}$):

\[
\frac{d}{dt} \xi = \frac{1}{m} \left(\alpha n \frac{\partial T(\alpha n v)}{\partial v} \bigg|_{\bar{v}} (\bar{u} - \rho C_d A \bar{v}) \right) \xi + \frac{1}{m} \frac{\alpha n T(\alpha n \bar{v})}{A_{dyn}} \eta
\]

- Example: numerical values
 - Let us use the following numerical values (all units in SI):
 \[
 T_m = 190, \beta = 0.4, \omega_m = 420, \alpha_5 = 10, C_r = 0.01, \]
 \[
m = 1500, g = 9.81, \rho = 1.2, C_d A = 0.79.
\]
 - For $\bar{v} = 25$ (90 km/h, or 55 mph), we get $\bar{u} = 0.2497$.
 - The linearization yields:
 \[
 A_{dyn} = -0.0134, \quad B_{dyn} = 1.1837
 \]
 \[
 \Rightarrow \quad G(s) = \frac{1.1837}{s + 0.0134}
 \]
Cruise control design

- A proportional controller would stabilize the closed-loop system.
- Assume we want to maintain the commanded speed (cruise control): we need to add an integrator.
- A PI controller will work, e.g.,
 \[C'(s) = 1.5 \frac{s + 1}{s} \]

- Linear control/model response to hill at specified angle between 5 and 25 sec
Nonlinear Simulation

- Check with BOTH linear AND nonlinear simulation

Hill response, angle=4

Graphs:
- Speed vs. Time
- Throttle vs. Time

November 21, 2010
Review

- (Jacobian) linearization:
 - Find the desired equilibrium condition (state and control).
 - Linearize the non-linear model around the equilibrium.

- Control design:
 - Design a linear compensator for the linear model.
 - If the linear system is closed-loop stable, so will be the nonlinear system—in a neighborhood of the equilibrium.
 - Check in a (nonlinear) simulation the robustness of your design with respect to “typical” deviations.
Effects of the saturation

• What if the slope is a little steeper (say 4.85 degrees)?

![Graph of speed and throttle over time]

• What is wrong?

• Systems experiencing **Integrator wind-up**
 - Once the input saturates, the integral of the error keeps increasing.
 - When the error decreases, the large integral value prevents the controller from resuming “normal operations” quickly (the integral error must decrease first!) – so the response is delayed

• **Idea**: once the input saturates, stop integrating the error (can’t do much about it anyway!)
Anti-windup Logic

- One option is the following logic for the integral gain:

\[K'_I = \begin{cases}
K_I & \text{if the input does not saturate;} \\
0 & \text{if the input saturates}
\end{cases} \]

- Another option is the following:
 - Compare the actual input and the commanded input.
 - If they are the same, the saturation is not in effect.
 - Otherwise, reduce the integral error by a constant times the difference.

\[u_{int} = \int K_i (e + K_{aw}(\text{sat}(u) - u)) \, dt \]

- With this choice, under saturation, the actuator/commanded difference is fed back to the integrator so that \(e_{act} = \text{sat}(u) - u \) tends to zero
 - Implies that the controller output is kept close to saturation limit.
 - The controller output will then change as soon as the error changes sign, thus avoiding the integral windup.
 - If there is no saturation, the anti-windup scheme has no effect.
Anti-windup Scheme

- Response to a 4.85 degree slope

- Anti-windup compensator avoids the velocity overshoot by preventing the error buildup in the integral term
Anti-windup Summary

- Anti-wind up schemes guarantee the **stability of the compensator** when the (original) feedback loop is effectively opened by the saturation.

- Prevent divergence of the integral error when the control cannot keep up with the reference.

- Maintain the integral errors “small.”

![Hill response no AW](image1)

![Hill response with AW](image2)
Code: Car Setup

```matlab
set(0,'DefaultAxesFontSize',12,'DefaultAxesFontWeight','demi')
set(0,'DefaultTextFontSize',12,'DefaultAxesFontWeight','demi')
set(0,'DefaultTextFontName','arial')
set(0,'DefaultAxesFontName','arial')
clear all
kclose all

% Parameters for defining the system dynamics
theta=0;
gear=5;
alpha=[40, 25, 16, 12, 10];  % gear ratios
Tm=190;  % engine torque constant, Nm
wm=420;  % peak torque rate, rad/sec
beta=0.4;  % torque coefficient
Cr=0.01;  % coefficient of rolling friction
rho=1.2;  % density of air, kg/m^3
A=2.4;  % car area, m^2
Cd=0.79/A;  % drag coefficient
g=9.8;  % gravitational constant
m=1500;  % mass
v=25;

% Compute the torque produced by the engine, Tm
omega=gear*(alpha(gear)*v);

% Compute the external forces on the vehicle
Fr=m*g*Cr;  % Rolling friction
Fa=0.5*rho*Cd*A*v^2;  % Aerodynamic drag
Fg=m*g*sin(theta);  % Road slope force
Fd=Fr+Fa+Fg;  % total deceleration

vbar=(Fa+Fr)/(F)
vbaru=(Fa*Fr)/(F)

dTdv=Tm-2*beta*(alpha(gear)*vbar/wm)+omega*(alpha(gear)/wm)

Adyn=(alpha(gear)*dTdv*vbar-rho*Cd*A*vbar)/m;
Bdyn=F/m;

Hillangle=4;  % non-saturating angle

sim('cruise_control')
figure(4);
subplot(211);
plot(Car1(:,5),Car1(:,[1 2]),'LineWidth',2);xlabel('Time');ylabel('Speed')
title(['Hill response, angle=',num2str(Hillangle)]);
subplot(212);
plot(Car1(:,5),Car1(:,[3 4]),'LineWidth',2);xlabel('Time');ylabel('Throttle')
figure(1);
subplot(211);
plot(Car1(:,5),Car1(:,[1 2]),'LineWidth',2);xlabel('Time');ylabel('Speed')
legend('NL','Lin','Location','SouthEast');
title(['Hill response, angle=',num2str(Hillangle)]);
subplot(212);
plot(Car1(:,5),Car1(:,[3 4]),'LineWidth',2);xlabel('Time');ylabel('Throttle')

Antiwindup_gain=0;  % us esame code with and without AWup
Hillangle=4.85;
sim('cruise_control_awup')
figure(2);
subplot(211);
plot(Car2(:,5),Car2(:,[1 2]),'LineWidth',2);xlabel('Time');ylabel('Speed')
legend('NL','Lin','Location','SouthEast');
title(['Hill response, angle=',num2str(Hillangle)]);
subplot(212);
plot(Car2(:,5),Car2(:,[3 4]),'LineWidth',2);xlabel('Time');ylabel('Throttle')
Car2_no_AW=Car2;

Antiwindup_gain=5;
sim('cruise_control_awup')
figure(3);
```
```matlab
subplot(211);
plot(Car2(:,5),Car2(:,[1 2]),'LineWidth',2);xlabel('Time');ylabel('Speed')
legend('NL','Lin','Location','SouthEast');
title(['Hill response, angle=',num2str(Hillangle),' With Anti-windup gain=',num2str(Antiwindup_gain)]);
subplot(212);
plot(Car2(:,5),Car2(:,[3 4]),'LineWidth',2);xlabel('Time');ylabel('Throttle')

figure(5);
subplot(211);
plot(Car2_no_AW(:,5),Car2_no_AW(:,[6 7]),10*Car2_no_AW(:,[6]),'LineWidth',2);xlabel('Time');ylabel('Windup error')
legend('sat(u)','u','10*e_{vel}','Location','NorthEast');
axis([4 20 -0.5 5])
title(['Hill response with AW'])

subplot(212);
plot(Car2(:,5),Car2(:,[6 7]),10*Car2(:,[8]),'LineWidth',2);xlabel('Time');ylabel('Throttle')
legend('sat(u)','u','10*e_{vel}','Location','NorthEast');
title(['Hill response no AW'])
axis([4 20 -0.5 5])
```

```