16.323 Lecture 5

Calculus of Variations

- Calculus of Variations
- Most books cover this material well, but Kirk Chapter 4 does a particularly nice job.
- See [here](#) for online reference.
Calculus of Variations

- **Goal:** Develop alternative approach to solve general optimization problems for continuous systems – variational calculus
 - Formal approach will provide new insights for constrained solutions, and a more direct path to the solution for other problems.

- **Main issue** – General control problem, the cost is a function of functions $x(t)$ and $u(t)$.

$$
\min J = h(x(t_f)) + \int_{t_0}^{t_f} g(x(t), u(t), t)) \, dt
$$

subject to

$$
\dot{x} = f(x, u, t) \\
x(t_0), t_0 \text{ given} \\
m(x(t_f), t_f) = 0
$$

- Call $J(x(t), u(t))$ a functional.

- Need to investigate how to find the optimal values of a functional.
 - For a function, we found the gradient, and set it to zero to find the stationary points, and then investigated the higher order derivatives to determine if it is a maximum or minimum.
 - Will investigate something similar for functionals.
• **Maximum and Minimum of a Function**

 – A function \(f(x) \) has a local minimum at \(x^* \) if

 \[
 f(x) \geq f(x^*)
 \]

 for all admissible \(x \) in \(\|x - x^*\| \leq \epsilon \)

 – Minimum can occur at (i) stationary point, (ii) at a boundary, or (iii) a point of discontinuous derivative.

 – If only consider stationary points of the differentiable function \(f(x) \), then statement equivalent to requiring that differential of \(f \) satisfy:

 \[
 df = \frac{\partial f}{\partial x} dx = 0
 \]

 for all small \(dx \), which gives the same necessary condition from Lecture 1

 \[
 \frac{\partial f}{\partial x} = 0
 \]

 • Note that this definition used norms to compare two vectors. Can do the same thing with functions ⇒ distance between two functions

 \[
 d = \| x_2(t) - x_1(t) \|
 \]

 where

 1. \(\| x(t) \| \geq 0 \) for all \(x(t) \), and \(\| x(t) \| = 0 \) only if \(x(t) = 0 \) for all \(t \) in the interval of definition.
 2. \(\| ax(t) \| = |a| \| x(t) \| \) for all real scalars \(a \).
 3. \(\| x_1(t) + x_2(t) \| \leq \| x_1(t) \| + \| x_2(t) \| \)

• **Common function norm:**

 \[
 \| x(t) \|_2 = \left(\int_{t_0}^{t_f} x(t)^T x(t) dt \right)^{1/2}
 \]
• **Maximum and Minimum of a Functional**

 – A functional $J(x(t))$ has a local minimum at $x^*(t)$ if

 $$J(x(t)) \geq J(x^*(t))$$

 for all admissible $x(t)$ in $\|x(t) - x^*(t)\| \leq \epsilon$

• Now define something equivalent to the differential of a function - called a **variation** of a functional.

 – An **increment** of a functional

 $$\Delta J(x(t), \delta x(t)) = J(x(t) + \delta x(t)) - J(x(t))$$

 – A **variation** of the functional is a linear approximation of this increment:

 $$\Delta J(x(t), \delta x(t)) = \delta J(x(t), \delta x(t)) + H.O.T.$$ i.e. $\delta J(x(t), \delta x(t))$ is linear in $\delta x(t)$.

Figure 5.1: Differential df versus increment Δf shown for a function, but the same difference holds for a functional.

June 18, 2008
Figure 5.2: Visualization of perturbations to function \(x(t)\) by \(\delta x(t)\) – it is a potential change in the value of \(x\) over the entire time period of interest. Typically require that if \(x(t)\) is in some class (i.e., continuous), that \(x(t) + \delta x(t)\) is also in that class.

- **Fundamental Theorem of the Calculus of Variations**
 - Let \(x\) be a function of \(t\) in the class \(\Omega\), and \(J(x)\) be a differentiable functional of \(x\). Assume that the functions in \(\Omega\) are not constrained by any boundaries.
 - If \(x^*\) is an extremal function, then the variation of \(J\) must vanish on \(x^*\), i.e. for all admissible \(\delta x\),
 \[
 \delta J(x(t), \delta x(t)) = 0
 \]
 - Proof is in Kirk, page 121, but it is relatively straightforward.

- How compute the variation? If \(J(x(t)) = \int_{t_0}^{t_f} f(x(t))\,dt\) where \(f\) has cts first and second derivatives with respect to \(x\), then
 \[
 \delta J(x(t), \delta x) = \int_{t_0}^{t_f} \left\{ \frac{\partial f(x(t))}{\partial x(t)} \right\} \delta x \, dt + f(x(t_f)) \delta t_f - f(x(t_0)) \delta t_0 \\
 = \int_{t_0}^{t_f} f_x(x(t)) \delta x \, dt + f(x(t_f)) \delta t_f - f(x(t_0)) \delta t_0
 \]
Variation Examples: Scalar

- For more general problems, first consider the cost evaluated on a scalar function \(x(t) \) with \(t_0, t_f \) and the curve endpoints fixed.

\[
J(x(t)) = \int_{t_0}^{t_f} g(x(t), \dot{x}(t), t) dt
\]

\[
\Rightarrow \delta J(x(t), \delta x) = \int_{t_0}^{t_f} \left[g_x(x(t), \dot{x}(t), t)\delta x + g_{\dot{x}}(x(t), \dot{x}(t), t)\delta \dot{x} \right] dt
\]

Note that \(\delta \dot{x} = \frac{d}{dt} \delta x \) so \(\delta x \) and \(\delta \dot{x} \) are not independent.

- Integrate by parts:

\[
\int uv \equiv uv - \int v du
\]

with \(u = g_{\dot{x}} \) and \(dv = \delta \dot{x} dt \) to get:

\[
\delta J(x(t), \delta x) = \int_{t_0}^{t_f} g_x(x(t), \dot{x}(t), t)\delta x dt + \left[g_{\dot{x}}(x(t), \dot{x}(t), t)\delta x \right]_{t_0}^{t_f}
\]

\[- \int_{t_0}^{t_f} \frac{d}{dt} g_{\dot{x}}(x(t), \dot{x}(t), t)\delta x dt\]

\[= \int_{t_0}^{t_f} \left[g_x(x(t), \dot{x}(t), t) - \frac{d}{dt} g_{\dot{x}}(x(t), \dot{x}(t), t) \right] \delta x(t) dt\]

\[+ \left[g_{\dot{x}}(x(t), \dot{x}(t), t)\delta x \right]_{t_0}^{t_f}\]

- Since \(x(t_0), x(t_f) \) given, then \(\delta x(t_0) = \delta x(t_f) = 0 \), yielding

\[
\delta J(x(t), \delta x) = \int_{t_0}^{t_f} \left[g_x(x(t), \dot{x}(t), t) - \frac{d}{dt} g_{\dot{x}}(x(t), \dot{x}(t), t) \right] \delta x(t) dt
\]
Recall need $\delta J = 0$ for all admissible $\delta x(t)$, which are arbitrary within $(t_0, t_f) \Rightarrow$ the (first order) necessary condition for a maximum or minimum is called Euler Equation:

$$\frac{\partial g(x(t), \dot{x}(t), t)}{\partial x} - \frac{d}{dt} \left(\frac{\partial g(x(t), \dot{x}(t), t)}{\partial \dot{x}} \right) = 0$$

Example: Find the curve that gives the shortest distance between 2 points in a plane (x_0, y_0) and (x_f, y_f).

- Cost function – sum of differential arc lengths:
 \[
 J = \int_{x_0}^{x_f} ds = \int_{x_0}^{x_f} \sqrt{(dx)^2 + (dy)^2} \\
 = \int_{x_0}^{x_f} \sqrt{1 + \left(\frac{dy}{dx} \right)^2} \, dx
 \]

- Take y as dependent variable, and x as independent one
 \[
 \frac{dy}{dx} \rightarrow \dot{y}
 \]

- New form of the cost:
 \[
 J = \int_{x_0}^{x_f} \sqrt{1 + \dot{y}^2} \, dx \rightarrow \int_{x_0}^{x_f} g(\dot{y}) \, dx
 \]

- Take partials: $\frac{\partial g}{\partial y} = 0$, and
 \[
 \frac{d}{dx} \left(\frac{\partial g}{\partial \dot{y}} \right) = \frac{d}{dy} \left(\frac{\partial g}{\partial \dot{y}} \right) \frac{d\dot{y}}{dx}
 = \frac{d}{dy} \left(\frac{\dot{y}}{(1 + \dot{y}^2)^{1/2}} \right) \dot{y} = \frac{\dot{y}}{(1 + \dot{y}^2)^{3/2}} = 0
 \]
 which implies that $\ddot{y} = 0$

- Most general curve with $\ddot{y} = 0$ is a line $y = c_1 x + c_2$

June 18, 2008
Vector Functions

• Can generalize the problem by including several \((N)\) functions \(x_i(t)\) and possibly free endpoints

\[
J(x(t)) = \int_{t_0}^{t_f} g(x(t), \dot{x}(t), t) \, dt
\]

with \(t_0, t_f, x(t_0)\) fixed.

• Then (drop the arguments for brevity)

\[
\delta J(x(t), \delta x) = \int_{t_0}^{t_f} [g_x \delta x(t) + g_{\dot{x}} \delta \dot{x}(t)] \, dt
\]

– Integrate by parts to get:

\[
\delta J(x(t), \delta x) = \int_{t_0}^{t_f} \left[g_x - \frac{d}{dt} g_{\dot{x}} \right] \delta x(t) \, dt + g_{\dot{x}}(x(t_f), \dot{x}(t_f), t_f) \delta x(t_f)
\]

• The requirement then is that for \(t \in (t_0, t_f)\), \(x(t)\) must satisfy

\[
\frac{\partial g}{\partial x} - \frac{d}{dt} \frac{\partial g}{\partial \dot{x}} = 0
\]

where \(x(t_0) = x_0\) which are the given \(N\) boundary conditions, and

the remaining \(N\) more BC follow from:

– \(x(t_f) = x_f\) if \(x_f\) is given as fixed,

– If \(x(t_f)\) are free, then

\[
\frac{\partial g(x(t), \dot{x}(t), t)}{\partial \dot{x}(t_f)} = 0
\]

• Note that we could also have a mixture, where parts of \(x(t_f)\) are given as fixed, and other parts are free – just use the rules above on each component of \(x_i(t_f)\)

June 18, 2008
Free Terminal Time

- Now consider a slight variation: the goal is to minimize

\[
J(x(t)) = \int_{t_0}^{t_f} g(x(t), \dot{x}(t), t) dt
\]

with \(t_0, x(t_0) \) fixed, \(t_f \) free, and various constraints on \(x(t_f) \)

- Compute variation of the functional considering 2 candidate solutions:
 - \(x(t) \), which we consider to be a perturbation of the optimal \(x^*(t) \) (that we need to find)

\[
\delta J(x^*(t), \delta x) = \int_{t_0}^{t_f} \left[g_x \delta x(t) + g_{\dot{x}} \delta \dot{x}(t) \right] dt + g(x^*(t_f), \dot{x}^*(t_f), t_f) \delta t_f
\]

 - Integrate by parts to get:

\[
\delta J(x^*(t), \delta x) = \int_{t_0}^{t_f} \left[g_x - \frac{d}{dt} g_{\dot{x}} \right] \delta x(t) dt
\]

\[
+ \ g_{\dot{x}}(x^*(t_f), \dot{x}^*(t_f), t_f) \delta x(t_f)
\]

\[
+ \ g(x^*(t_f), \dot{x}^*(t_f), t_f) \delta t_f
\]

- Looks standard so far, but we have to be careful how we handle the terminal conditions
Figure 5.3: Comparison of possible changes to function at end time when t_f is free.

- By definition, $\delta x(t_f)$ is the difference between two admissible functions at time t_f (in this case the optimal solution x^* and another candidate x).
 - But in this case, must also account for possible changes to δt_f.
 - Define δx_f as being the difference between the ends of the two possible functions – **total possible change** in the final state:
 \[
 \delta x_f \approx \delta x(t_f) + x^*(t_f) \delta t_f
 \]
 so $\delta x(t_f) \neq \delta x_f$ in general.

- Substitute to get
 \[
 \delta J(x^*(t), \delta x) = \int_{t_0}^{t_f} \left[g_x - \frac{d}{dt} g_{\dot{x}} \right] \delta x(t) dt + g_{\dot{x}}(x^*(t_f), \dot{x}^*(t_f), t_f) \delta x_f
 \]
 \[
 + [g(x^*(t_f), \dot{x}^*(t_f), t_f) - g_x(x^*(t_f), \dot{x}^*(t_f), t_f) \dot{x}^*(t_f)] \delta t_f
 \]
Independent of the terminal constraint, the conditions on the solution $x^*(t)$ to be an extremal for this case are that it satisfy the Euler equations

$$g_x(x^*(t), \dot{x}^*(t), t) - \frac{d}{dt}g_{\dot{x}}(x^*(t), \dot{x}^*(t), t) = 0$$

Now consider the additional constraints on the individual elements of $x^*(t_f)$ and t_f to find the other boundary conditions.

Type of terminal constraints determines how we treat δx_f and δt_f

1. **Unrelated**
 - $x(t_f) = \Theta(t_f)$

2. **Related by a simple function**
 - $x(t_f) = \Theta(t_f)$

3. **Specified by a more complex constraint**
 - $m(x(t_f), t_f) = 0$

Type 1: If t_f and $x(t_f)$ are free but unrelated, then δx_f and δt_f are independent and arbitrary \Rightarrow their coefficients must both be zero.

$$g_x(x^*(t), \dot{x}^*(t), t) - \frac{d}{dt}g_{\dot{x}}(x^*(t), \dot{x}^*(t), t) = 0$$

$$g(x^*(t_f), \dot{x}^*(t_f), t_f) - g_{\dot{x}}(x^*(t_f), \dot{x}^*(t_f), t_f)\dot{x}^*(t_f) = 0$$

$$g_{\dot{x}}(x^*(t_f), \dot{x}^*(t_f), t_f) = 0$$

Which makes it clear that this is a **two-point boundary value problem**, as we now have conditions at both t_0 and t_f.

June 18, 2008
• **Type 2:** If t_f and $x(t_f)$ are free but related as $x(t_f) = \Theta(t_f)$, then

$$\delta x_f = \frac{d\Theta}{dt}(t_f)\delta t_f$$

– Substitute and collect terms gives

$$\delta J = \int_{t_0}^{t_f} \left[g_x - \frac{d}{dt}g_x \right] \delta x dt + \left[g_x(x^*(t_f), \dot{x}^*(t_f), t_f) \frac{d\Theta}{dt}(t_f) \right. \\
\left. + g(x^*(t_f), \dot{x}^*(t_f), t_f) - g_x(x^*(t_f), \dot{x}^*(t_f), t_f)\dot{x}^*(t_f) \right] \delta t_f$$

– Set coefficient of δt_f to zero (it is arbitrary) \Rightarrow full conditions

$$g_x(x^*(t), \dot{x}^*(t), t) - \frac{d}{dt}g_x(x^*(t), \dot{x}^*(t), t) = 0$$

$$g_x(x^*(t_f), \dot{x}^*(t_f), t_f) \left[\frac{d\Theta}{dt}(t_f) - \dot{x}^*(t_f) \right] + g(x^*(t_f), \dot{x}^*(t_f), t_f) = 0$$

– Last equation called the **Transversality Condition**

• To handle third type of terminal condition, must address solution of constrained problems.
Figure 5.4: Summary of possible terminal constraints (Kirk, page 151)
Example: 5–1

- Find the shortest curve from the origin to a specified line.

- **Goal:** minimize the cost functional (See page 5–6)

 \[
 J = \int_{t_0}^{t_f} \sqrt{1 + \dot{x}^2(t)} \, dt
 \]

 given that \(t_0 = 0, \, x(0) = 0, \) and \(t_f \) and \(x(t_f) \) are free, but \(x(t_f) \) must line on the line
 \[
 \theta(t) = -5t + 15
 \]

- Since \(g(x, \dot{x}, t) \) is only a function of \(\dot{x} \), Euler equation reduces to

 \[
 \frac{d}{dt} \left[\frac{\dot{x}^*(t)}{[1 + \dot{x}^*(t)^2]^{1/2}} \right] = 0
 \]

 which after differentiating and simplifying, gives \(\ddot{x}^*(t) = 0 \) \(\Rightarrow \) answer is a straight line

 \[
 x^*(t) = c_1 t + c_0
 \]

 but since \(x(0) = 0, \) then \(c_0 = 0 \)

- Transversality condition gives

 \[
 \left[\frac{\dot{x}^*(t_f)}{[1 + \dot{x}^*(t_f)^2]^{1/2}} \right] [-5 - \dot{x}^*(t_f)] + [1 + \dot{x}^*(t_f)^2]^{1/2} = 0
 \]

 that simplifies to

 \[
 [\dot{x}^*(t_f)] [-5 - \dot{x}^*(t_f)] + [1 + \dot{x}^*(t_f)^2] = -5\dot{x}^*(t_f) + 1 = 0
 \]

 so that \(\dot{x}^*(t_f) = c_1 = 1/5 \)

 – Not a surprise, as this gives the slope of a line orthogonal to the constraint line.

- To find final time: \(x(t_f) = -5t_f + 15 = t_f/5 \) which gives \(t_f \approx 2.88 \)
Example: 5–2

- Had the terminal constraint been a bit more challenging, such as
 \[\Theta(t) = \frac{1}{2}([t - 5]^2 - 1) \Rightarrow \frac{d\Theta}{dt} = t - 5 \]

- Then the transversality condition gives
 \[
 \left[\frac{\dot{x}^*(t_f)}{[1 + \dot{x}^*(t_f)^2]^{1/2}} \right] [t_f - 5 - \dot{x}^*(t_f)] + [1 + \dot{x}^*(t_f)^2]^{1/2} = 0 \\
 [\dot{x}^*(t_f)] [t_f - 5 - \dot{x}^*(t_f)] + [1 + \dot{x}^*(t_f)^2] = 0 \\
 c_1 [t_f - 5] + 1 = 0
 \]

- Now look at \(x^*(t) \) and \(\Theta(t) \) at \(t_f \)
 \[x^*(t_f) = -\frac{t_f}{(t_f - 5)} = \frac{1}{2}([t_f - 5]^2 - 1) \]
 which gives \(t_f = 3 \), \(c_1 = 1/2 \) and \(x^*(t_f) = t/2 \)

Figure 5.5: Quadratic terminal constraint.
Corner Conditions

• Key generalization of the preceding is to allow the possibility that the solutions not be as **smooth**
 – Assume that $x(t)$ cts, but allow discontinuities in $\dot{x}(t)$, which occur at **corners**.
 – Naturally occur when intermediate state constraints imposed, or with jumps in the control signal.

• **Goal:** with t_0, t_f, $x(t_0)$, and $x(t_f)$ fixed, minimize cost functional

$$J(x(t), t) = \int_{t_0}^{t_f} g(x(t), \dot{x}(t), t) dt$$

 – Assume g has cts first/second derivatives wrt all arguments
 – Even so, \dot{x} discontinuity could lead to a discontinuity in g.

• Assume that \dot{x} has a discontinuity at some time $t_1 \in (t_0, t_f)$, which is not fixed (or typically known). Divide cost into 2 regions:

$$J(x(t), t) = \int_{t_0}^{t_1} g(x(t), \dot{x}(t), t) dt + \int_{t_1}^{t_f} g(x(t), \dot{x}(t), t) dt$$

• Expand as before – note that t_1 is not fixed

$$\delta J = \int_{t_0}^{t_1} \left[\frac{\partial g}{\partial x} \delta x + \frac{\partial g}{\partial \dot{x}} \delta \dot{x} \right] dt + g(t_1^-) \delta t_1$$

$$+ \int_{t_1}^{t_f} \left[\frac{\partial g}{\partial x} \delta x + \frac{\partial g}{\partial \dot{x}} \delta \dot{x} \right] dt - g(t_1^+) \delta t_1$$
Now IBP

\[
\delta J = \int_{t_0}^{t_1} \left[g_x - \frac{d}{dt} (g_x) \right] \delta x dt + g(t_1^-) \delta t_1 + g_x(t_1^-) \delta x(t_1^-) + \int_{t_1}^{t_f} \left[g_x - \frac{d}{dt} (g_x) \right] \delta x dt - g(t_1^+) \delta t_1 - g_x(t_1^+) \delta x(t_1^+)
\]

As on 5–9, must constrain \(\delta x_1 \), which is the total variation in the solution at time \(t_1 \)

- Continuity requires that these two expressions for \(\delta x_1 \) be equal
- Already know that it is possible that \(\dot{x}(t_1^-) \neq \dot{x}(t_1^+) \), so possible that \(\delta x(t_1^-) \neq \delta x(t_1^+) \) as well.

Substitute:

\[
\delta J = \int_{t_0}^{t_1} \left[g_x - \frac{d}{dt} (g_x) \right] \delta x dt + \left[g(t_1^-) - g_x(t_1^-) \dot{x}(t_1^-) \right] \delta t_1 + g_x(t_1^-) \delta x(t_1^-) + \int_{t_1}^{t_f} \left[g_x - \frac{d}{dt} (g_x) \right] \delta x dt - \left[g(t_1^+) - g_x(t_1^+) \dot{x}(t_1^+) \right] \delta t_1 - g_x(t_1^+) \delta x(t_1^+)
\]

Necessary conditions are then:

\[
\begin{align*}
 g_x - \frac{d}{dt} (g_x) &= 0 \quad t \in (t_0, t_f) \\
 g_x(t_1^-) &= g_x(t_1^+) \\
 g(t_1^-) - g_x(t_1^-) \dot{x}(t_1^-) &= g(t_1^+) - g_x(t_1^+) \dot{x}(t_1^+)
\end{align*}
\]

- Last two are the **Weierstrass-Erdmann** conditions
Necessary conditions given for a special set of the terminal conditions, but the form of the internal conditions unchanged by different terminal constraints

- With several corners, there are a set of constraints for each
- Can be used to demonstrate that there isn't a corner

Typical instance that induces corners is intermediate time constraints of the form $x(t_1) = \theta(t_1)$.

- i.e., the solution must touch a specified curve at some point in time during the solution.

Slightly complicated in this case, because the constraint couples the allowable variations in δx_1 and δt since

$$\delta x_1 = \frac{d\theta}{dt} \delta t_1 = \dot{\theta} \delta t_1$$

- But can eliminate δx_1 in favor of δt_1 in the expression for δJ to get new corner condition:

$$g(t_1^-) + g_x(t_1^-) \left[\theta(t_1^-) - \dot{x}(t_1^-) \right] = g(t_1^+) + g_x(t_1^+) \left[\dot{\theta}(t_1^+) - \dot{x}(t_1^+) \right]$$

- So now $g_x(t_1^-) = g_x(t_1^+)$ no longer needed, but have $x(t_1) = \theta(t_1)$
Corner Example

- Find shortest length path joining the points \(x = 0, t = -2 \) and \(x = 0, t = 1 \) that touches the curve \(x = t^2 + 3 \) at some point

- In this case, \(J = \int_{-2}^{1} \sqrt{1 + \dot{x}^2} dt \) with \(x(1) = x(-2) = 0 \) and \(x(t_1) = t_1^2 + 3 \)

- Note that since \(g \) is only a function of \(\dot{x} \), then solution \(x(t) \) will only be linear in each segment (see 5–13)

\[
\text{segment 1} \quad x(t) = a + bt \\
\text{segment 2} \quad x(t) = c + dt
\]

- Terminal conditions: \(x(-2) = a - 2b = 0 \) and \(x(1) = c + d = 0 \)

- Apply corner condition:

\[
\sqrt{1 + \dot{x}(t_1^-)^2} + \frac{\dot{x}(t_1^-)}{\sqrt{1 + \dot{x}(t_1^-)^2}} \left[2t_1^- - \dot{x}(t_1^-) \right]
\]

\[
= \frac{1 + 2t_1^- \dot{x}(t_1^-)}{\sqrt{1 + \dot{x}(t_1^-)^2}} = \frac{1 + 2t_1^+ \dot{x}(t_1^+)}{\sqrt{1 + \dot{x}(t_1^+)^2}}
\]

which gives:

\[
\frac{1 + 2bt_1}{\sqrt{1 + b^2}} = \frac{1 + 2dt_1}{\sqrt{1 + d^2}}
\]

- Solve using \texttt{fsolve} to get:

\[
a = 3.0947, b = 1.5474, c = 2.8362, d = -2.8362, t_1 = -0.0590
\]

```matlab
function F=myfunc(x);

x=[a b c d t1];
F=[x(1)-2*x(2); x(3)+x(4); (1+2*x(2)*x(5))/(1+x(2)^2)^(1/2) - (1+2*x(4)*x(5))/(1+x(4)^2)^(1/2); x(1)+x(2)*x(5) - x(5)^2+3); x(3)+x(4)*x(5) - x(5)^2+3];
return
x = fsolve('myfunc',[2 1 2 -2 0])
```

June 18, 2008
Constrained Solutions

Now consider variations of the basic problem that include constraints.

For example, if the goal is to find the extremal function \(x^* \) that minimizes

\[
J(x(t), t) = \int_{t_0}^{t_f} g(x(t), \dot{x}(t), t) \, dt
\]

subject to the constraint that a given set of \(n \) differential equations be satisfied

\[
f(x(t), \dot{x}(t), t) = 0
\]

where we assume that \(x \in \mathbb{R}^{n+m} \) (take \(t_f \) and \(x(t_f) \) to be fixed)

As with the basic optimization problems in Lecture 2, proceed by augmenting cost with the constraints using Lagrange multipliers

- Since the constraints must be satisfied at all time, these multipliers are also assumed to be functions of time.

\[
J_a(x(t), t) = \int_{t_0}^{t_f} \{ g(x, \dot{x}, t) + p(t)^T f(x, \dot{x}, t) \} \, dt
\]

- Does not change the cost if the constraints are satisfied.

- Time varying Lagrange multipliers give more degrees of freedom in specifying how the constraints are added.

Take variation of augmented functional considering perturbations to both \(x(t) \) and \(p(t) \)

\[
\delta J(x(t), \delta x(t), p(t), \delta p(t))
\]

\[
= \int_{t_0}^{t_f} \left\{ \left[g_x + p^T f_x \right] \delta x(t) + \left[g_x + p^T f_x \right] \delta \dot{x}(t) + f^T \delta p(t) \right\} \, dt
\]
As before, integrate by parts to get:

\[
\delta J(x(t), \dot{x}(t), p(t), \delta p(t))
\]

\[
= \int_{t_0}^{t_f} \left(\left\{ [g_x + p^T f_x] - \frac{d}{dt} [g_x + p^T f_x] \right\} \delta x(t) + f^T \delta p(t) \right) dt
\]

To simplify things a bit, define

\[
g_a(x(t), \dot{x}(t), t) \equiv g(x(t), \dot{x}(t), t) + p(t)^T \mathbf{f}(x(t), \dot{x}(t), t)
\]

On the extremal, the variation must be zero, but since \(\delta x(t)\) and \(\delta p(t)\) can be arbitrary, can only occur if

\[
\frac{\partial g_a(x(t), \dot{x}(t), t)}{\partial x} - \frac{d}{dt} \left(\frac{\partial g_a(x(t), \dot{x}(t), t)}{\partial \dot{x}} \right) = 0
\]

\[
f(x(t), \dot{x}(t), t) = 0
\]

which are obviously a generalized version of the Euler equations obtained before.

Note similarity of the definition of \(g_a\) here with the Hamiltonian on page 4–4.

Will find that this generalization carries over to future optimizations as well.
General Terminal Conditions

- Now consider Type 3 constraints on 5–10, which are a very general form with \(t_f \) free and \(x(t_f) \) given by a condition:

\[
m(x(t_f), t_f) = 0
\]

- Constrained optimization, so as before, augment the cost functional

\[
J(x(t), t) = h(x(t_f), t_f) + \int_{t_0}^{t_f} g(x(t), x'(t), t) dt
\]

with the constraint using Lagrange multipliers:

\[
J_a(x(t), \nu, t) = h(x(t_f), t_f) + \nu^T m(x(t_f), t_f) + \int_{t_0}^{t_f} g(x(t), x'(t), t) dt
\]

- Considering changes to \(x(t), t_f, x(t_f) \) and \(\nu \), the variation for \(J_a \) is

\[
\delta J_a = h_x(t_f) \delta x_f + h_{t_f} \delta t_f + m(t_f)^T \delta \nu + \nu^T \left(m_x(t_f) \delta x_f + m_{t_f}(t_f) \delta t_f \right) + \int_{t_0}^{t_f} \left[g_x \delta x + g_x \delta \dot{x} \right] dt + g(t_f) \delta t_f
\]

\[
= \left[h_x(t_f) + \nu^T m_x(t_f) \right] \delta x_f + \left[h_{t_f} + \nu^T m_{t_f}(t_f) + g(t_f) \right] \delta t_f + m(t_f)^T \delta \nu + \int_{t_0}^{t_f} \left[g_x - \frac{d}{dt} g_x \right] \delta x dt + g_x(t_f) \delta x(t_f)
\]

- Now use that \(\delta x_f = \delta x(t_f) + \dot{x}(t_f) \delta t_f \) as before to get

\[
\delta J_a = \left[h_x(t_f) + \nu^T m_x(t_f) + g_x(t_f) \right] \delta x_f + \left[h_{t_f} + \nu^T m_{t_f}(t_f) + g(t_f) - g_x(t_f) \dot{x}(t_f) \right] \delta t_f + m(t_f)^T \delta \nu + \int_{t_0}^{t_f} \left[g_x - \frac{d}{dt} g_x \right] \delta x dt
\]
• Looks like a bit of a mess, but we can clean it up a bit using

\[w(x(tf), \nu, tf) = h(x(tf), tf) + \nu^T m(x(tf), tf) \]

to get

\[\delta J_a = \left[w_x(tf) + g_x(tf) \right] \delta x_f \\
+ \left[w_{tf} + g(tf) - g_x(tf) \dot{x}(tf) \right] \delta t_f + m^T(tf) \delta \nu \\
+ \int_{t_0}^{tf} \left[g_x - \frac{d}{dt} g_x \right] \delta x dt \]

– Given the extra degrees of freedom in the multipliers, can treat all of the variations as independent ⇒ all coefficients must be zero to achieve \(\delta J_a = 0 \)

• So the necessary conditions are

\[
\begin{align*}
g_x - \frac{d}{dt} g_x &= 0 \quad \text{(dim } n) \\
w_x=tf + g_x=tf &= 0 \quad \text{(dim } n) \\
w_{tf} + g(tf) - g_x(tf) \dot{x}(tf) &= 0 \quad \text{(dim } 1)
\end{align*}
\]

– With \(x(t_0) = x_0 \) \((\text{dim } n)\) and \(m(x(tf), tf) = 0 \) \((\text{dim } m)\) combined with last 2 conditions ⇒ \(2n + m + 1 \) constraints

– Solution of Eulers equation has \(2n \) constants of integration for \(x(t) \), and must find \(\nu \) \((\text{dim } m)\) and \(t_f \) ⇒ \(2n + m + 1 \) unknowns

• Some special cases:

– If \(t_f \) is fixed, \(h = h(x(tf)) \), \(m \rightarrow m(x(tf)) \) and we lose the last condition in box – others remain unchanged

– If \(t_f \) is fixed, \(x(tf) \) free, then there is no \(m \), no \(\nu \) and \(w \) reduces to \(h \).

• Kirk’s book also considers several other type of constraints.