Exercises 07

A spacecraft is in orbit about a planet whose gravitational constant is $\mu = 12$. At some instant of time, when the vehicle is at the point P_1 for which $r_1 = 4i_x$, a velocity change Δv_1 is made to place the vehicle in a new orbit to intercept a target at the point P_2 for which $r_2 = 4i_x + 4\sqrt{3}i_y$. The velocity at P_1, before the impulse, is $v_0 = \frac{2}{3}\sqrt{3}i_y$.

1. Calculate the elements a, p and h of the orbit before the impulse.

2. Calculate the optimum Δv_1 by first using an appropriate iteration algorithm to obtain the orbital parameter. Then determine the corresponding chordal and extended radial components of the optimum velocity. The resulting velocity vector should be

$$v_1 = i_x + \sqrt{3}i_y$$

3. Find the new orbital elements.

4. Illustrate the calculations with an appropriate vector diagram.