Lectures 7: Modulation with 2-D signal

Eytan Modiano
Two-dimensional signals

- \(S_i = (S_{i1}, S_{i2}) \)

- Set of signal points is called a constellation

- 2-D constellations are commonly used

- Large constellations can be used to transmit many bits per symbol
 - More bandwidth efficient
 - More error prone

- The “shape” of the constellation can be used to minimize error probability by keeping symbols as far apart as possible

- Common constellations
 - QAM: Quadrature Amplitude Modulation
 - PAM in two dimensions
 - PSK: Phase Shift Keying
 - Special constellation where all symbols have equal power
Symmetric M-QAM

\[S_m = (A_m^x, A_m^y), \quad A_m^x, A_m^y \in \left\{ \pm 1, \pm 3, \ldots, \pm (\sqrt{M} - 1) \right\} \]

M is the total number of signal points (symbols)

\(\sqrt{M} \) signal levels on each axis

Constellation is symmetric

\[\Rightarrow M = K^2, \text{ for some } K \]

Signal levels on each axis are

the same as for PAM

E.g., 4-QAM \(\Rightarrow A_m^x, A_m^y \in \{\pm 1\} \)

16-QAM \(\Rightarrow A_m^x, A_m^y \in \{\pm 1, \pm 3\} \)
Bandwidth occupancy of QAM

- When using a rectangular pulse, the Fourier transform is a Sinc

\[g(t) \]

\[|G(f)| \]

- First null BW is still \(\frac{2}{T} \)
 - \(\log_2(M) \) bits per symbol
 - \(R_b = \frac{\log_2(M)}{T} \)
 - Bandwidth Efficiency = \(\frac{R_b}{BW} = \frac{\log_2(M)}{2} \)

\[\Rightarrow \text{“Same as for PAM”} \]

But as we will see next, QAM is more energy efficient than PAM
Energy efficiency

\[E_{sm} = [(A_m^x)^2 + (A_m^y)^2]E_g \]

\[E[(A_m^x)^2] = E[(A_m^y)^2] = \frac{K^2 - 1}{3} = \frac{M - 1}{3}, \quad K = \sqrt{M} \]

\[\overline{E_s} = \frac{2(M - 1)}{3} E_g \]

Transmitted energy \[= \frac{\overline{E_s}}{2} = \frac{(M - 1)}{3} E_g \]

\[E_b(QAM) = \text{Energy / bit} = \frac{(M - 1)}{3 \log_2(M)} E_g \]

- Compare to PAM: \(E_b \) increases with \(M \), but not nearly as fast as PAM

\[E_b(PAM) = \frac{(M^2 - 1)}{6 \log_2(M)} E_g \]
Bandpass QAM

- **Modulate the two dimensional signal by multiplication by orthogonal carriers (sinusoids): Sine and Cosine**
 - This is accomplished by multiplying the A^x component by Cosine and the A^y component by sine
 - Typically, people do not refer to these components as x,y but rather A^c or A^s for cosine and sine or sometimes as A^Q, and A^I for quadrature or in-phase components

- **The transmitted signal, corresponding to the m^{th} symbol is:**

 \[U_m(t) = A^x_m g(t) \cos(2\pi f_c t) + A^y_m g(t) \sin(2\pi f_c t), \quad m = 1 \ldots M \]
Modulator

Binary data → Map Log(M) bits into one of M symbols $A_m = (A^x, A^y)$ → g(t) → Cos($2\pi f_c t$) → $U_m(t)$

$U_m(t) = g(t) \cdot \text{Map Log}(M)$

$g(t) = \begin{cases}
\text{Cos}(2\pi f_c t) & \text{if} \, \text{Binary data is} \, \text{Cos}
\end{cases}$

$g(t) = \begin{cases}
\text{Sin}(2\pi f_c t) & \text{if} \, \text{Binary data is} \, \text{Sin}
\end{cases}$
Demodulation: Recovering the baseband signals

- Over a symbol duration, \(\sin(2\pi f_c t) \) and \(\cos(2\pi f_c t) \) are orthogonal
 - As long as the symbol duration is an integer number of cycles of the carrier wave \(f_c = n/T \) for some \(n \)
- When multiplied by a sine, the cosine component of \(U(t) \) disappears and similarly the sine component disappears when multiplied by cosine
Demodulation, cont.

\[U(t)2\cos(2\pi f_c t) = 2A^x g(t)\cos^2(2\pi f_c t) + 2A^y g(t)\cos(2\pi f_c t)\sin\left(2\pi f_c t\right) \]

\[\cos^2(\alpha) = \frac{1 + \cos(2\alpha)}{2} \]

\[\Rightarrow U(t)2\cos(2\pi f_c t) = S^x(t) + S^x(t)\cos(4\pi f_c t) \rightarrow LPF \Rightarrow S^x(t) = A^x g(t) \]

Similarly,

\[U(t)2\sin(2\pi f_c t) = 2A^x g(t)\cos(2\pi f_c t)\sin(2\pi f_c t) + 2A^y g(t)\sin^2(2\pi f_c t) \]

\[\sin^2(\alpha) = \frac{1 - \cos(2\alpha)}{2} \]

\[\Rightarrow U(t)2\sin(2\pi f_c t) = S^y(t) - S^y(t)\cos(4\pi f_c t) \rightarrow LPF \Rightarrow S^y(t) = A^y g(t) \]
Phase Shift Keying (PSK)

- Two Dimensional signals where all symbols have equal energy levels
 - I.e., they lie on a circle or radius $\sqrt{E_s}$

- Symbols are equally spaced to minimize likelihood of errors

- E.g., Binary PSK

- 4-PSK (above) same as 4-QAM
M-PSK

\[A_i^x = \cos\left(\frac{2\pi i}{M}\right), \quad A_i^y = \sin\left(\frac{2\pi i}{M}\right), \quad i = 0, \ldots, M - 1 \]

\[U_m(t) = g(t) A_m^x \cos(2\pi f_c t) - g(t) A_m^y \sin(2\pi f_c t) \]

Notice: \[\cos(\alpha)\cos(\beta) = \frac{\cos(\alpha - \beta) + \cos(\alpha + \beta)}{2} \]

\[\sin(\alpha)\sin(\beta) = \frac{\cos(\alpha - \beta) - \cos(\alpha + \beta)}{2} \]

Hence, \[U_m(t) = g(t) \cos(2\pi f_c t + 2\pi n / M) \]

\[\phi_m = 2\pi n / M = \text{phases shift of } m^{th} \text{ symbol} \]

\[U_m(t) = g(t) \cos(2\pi f_c t + \phi_m), \quad m = 0 \ldots M - 1 \]
M-PSK Summary

- Constellation of M Phase shifted symbols
 - All have equal energy levels
 - \(\log_2(M) \) bits per symbol

- Modulation:

 \[g(t) \]
 \[\text{Map } \log(M) \text{ bits into one of } M \text{ symbols} \]
 \[A_m = (A_x, A_y) \]

- Notice that for PSK we subtract the sine component from the cosine component
 - For convenience of notation only. If we added, the phase shift would have been negative but the end result is the same

- Demodulation is the same as for QAM