Spatial Disorientation

16.400/16.453
Human Factors Engineering
Prof. L. Young Sept. 2011
“[A failure] to sense correctly the position, motion or attitude of his aircraft or of himself [herself] within the fixed coordinate system provided by the surface of the earth and the gravitational vertical.

In addition, errors in perception by the aviator of his position, motion or attitude with respect to his aircraft, or of his own aircraft relative to other aircraft, may also be embraced within a broader definition of spatial disorientation in flight. -- Alan Benson (1978)
SPATIAL DISORIENTATION IN FLIGHT
Spatial Disorientation Types

TYPE I -- Unrecognized

• Pilot Does Not Consciously Perceive Any Manifestation of Spatial Disorientation
• Most Often Occurs When Pilot Breaks Instrument Cross-Check
• Most Likely to Lead to Controlled Flight Into Terrain
TYPE II -- Recognized

- Pilot Consciously Perceives A Manifestation of Spatial Disorientation but May Not Attribute It to SD Itself
- Conflict between “Natural” and “Synthetic” SD Percepts May Occur
- Instrument Malfunction Is Often Suspected
Spatial Disorientation Types

TYPE III -- Incapacitating

- Experienced by 10-15% of Aviators
- Vestibulo-Ocular Disorganization (i.e., uncontrollable nystagmus)
- Motor Conflict (e.g., “Giant Hand”)
- Temporal Distortion
- Dissociation (“Break-Off”)
SPATIAL DISORIENTATION IN FLIGHT
Predisposing Perceptual Factors

- SD Is More Likely to Occur at Night Or in Bad Weather
- Visual and Nonvisual Illusions Contribute Equally to SD
- Sparse Terrain Is More Challenging Than A Densely Vegetated One
- Loss Of Other Aspects Of Situation Awareness Can Lead to SD
SPATIAL DISORIENTATION IN FLIGHT
Loss of Situation Awareness and SD

- Spatial Orientation is Part of Overall Situation Awareness
- SD Automatically Results in LSA
- Failure to Maintain Overall SA Can Lead to SD
- SA Is Especially Challenged in Poor Visual Conditions

SA in Good Weather
Spatial Orientation is Part of Overall Situation Awareness

SD Automatically Results in LSA

Failure to Maintain Overall SA Can Lead to SD

SA Is Especially Challenged in Poor Visual Conditions

SA in Good Weather
SPATIAL DISORIENTATION IN FLIGHT
Loss of Situation Awareness and SD

- Spatial Orientation is Part of Overall Situation Awareness
- SD Automatically Results in LSA
- Failure to Maintain Overall SA Can Lead to SD
- SA Is Especially Challenged in Poor Visual Conditions

SA in Good Weather
SPATIAL DISORIENTATION IN FLIGHT
Loss of Situation Awareness and SD

- Spatial Orientation is Part of Overall Situation Awareness
- SD Automatically Results in LSA
- Failure to Maintain Overall SA Can Lead to SD
- SA Is Especially Challenged in Poor Visual Conditions

SA in Good Weather
SPATIAL DISORIENTATION IN FLIGHT
Loss of Situation Awareness and SD

- Spatial Orientation is Part of Overall Situation Awareness
- SD Automatically Results in LSA
- Failure to Maintain Overall SA Can Lead to SD
- SA Is Especially Challenged in Poor Visual Conditions
SPATIAL DISORIENTATION IN FLIGHT
Loss of Situation Awareness and SD

- Spatial Orientation is Part of Overall Situation Awareness
- SD Automatically Results in LSA
- Failure to Maintain Overall SA Can Lead to SD
- SA Is Especially Challenged in Poor Visual Conditions

SA in Good Weather

SA in Bad Weather
SPATIAL DISORIENTATION IN FLIGHT
Pilot-Specific Factors

• Experience
 • Number of hours (no linear relationship with age)
 • Instrument proficiency
 • Training experience

• Type of Aircraft (100% SD in fighter pilots)

• Medical Conditions
 • Alternobaric vertigo
 • Positional nystagmus
1980s

- SD and/or LSA Account for 27 Mishaps Per Year
 - Approximately 43% of all USAF Class A mishaps
 - 43 fatalities annually (85% of all operational-related)
 - 8 SD mishaps annually ($100M per annum cost)

1990s

- SD and/or LSA Account for Over 15 Mishaps Per Year
 - Over 50% of all USAF Class A mishaps
 - 5 SD mishaps annually ($80M per annum cost)
 - SD/LSA mishaps decreasing in number

- SD and/or LSA account for over 15 mishaps per year.
SPATIAL DISORIENTATION IN FLIGHT
USAF Mishap Rates

SD Class A Mishap Rate is Largely Unchanged from 1970s!

Operations -- includes Loss of Situational Awareness
Spatial Disorientation
The Inner Ear and SD
Sensing Motion

We Don’t Fly by the Seat of Our Pants (or do we?)
The Giant Hand
Slides on sensory signals removed due to copyright restrictions.
Slides on sensory signals removed due to copyright restrictions.
Slides on sensory signals removed due to copyright restrictions.
Slides on sensory signals removed due to copyright restrictions.
Slides on sensory signals removed due to copyright restrictions.
Slides on sensory signals removed due to copyright restrictions.
Slides on sensory signals removed due to copyright restrictions.
Slides on sensory signals removed due to copyright restrictions.
Slides on sensory signals removed due to copyright restrictions.
Slides on sensory signals removed due to copyright restrictions.
Slides on sensory signals removed due to copyright restrictions.
Slides on sensory signals removed due to copyright restrictions.
Slides on sensory signals removed due to copyright restrictions.
Slides on sensory signals removed due to copyright restrictions.
“The vestibular nerve occupies a special position among the senses. Its sensations do not form part of our conscious knowledge of the world...Whenever we perceive an object we have the basic knowledge about our body and about the attitude of our body...

The vestibular apparatus with its influence on the muscle tone plays a part in every perception... Our impressions concerning our attitudes, the posture of our body, and the motility of the body... form the continuous background of our experiences. That this background is not in the full light of consciousness does not impair its importance.” -- Paul Schilder (1933)
VESTIBULAR ORIENTATION

Cardinal Principle of Vestibular Function

Semicircular Canals

• Designed to detect angular accelerations generated during terrestrial activity

Otolith Organs

• Designed to detect linear accelerations generated during terrestrial activity

• Signal head orientation relative to gravity/gravitoinertial force
VESTIBULAR ORIENTATION
Transduction in the Labyrinth

Semicircular Canals:
- Cupula
- Membranous Ampulla
- Endolymph
- Hair Cells
- Crista Ampullaris
- Ampullary Nerve

Otolith Organs:
- Otoconia
- Otolithic Membrane
- Utricle (or Saccule)
- Endolymph
- Hair Cells
- Macula Utriculi (or Sacculi)
- Utricular (or Saccular) Nerve

Image by MIT OpenCourseWare.
Semicircular Canal Function

<table>
<thead>
<tr>
<th>Position of Cilia</th>
<th>Hyperpolarized</th>
<th>Depolarized</th>
<th>Normal</th>
<th>Polarization of hair cell</th>
</tr>
</thead>
<tbody>
<tr>
<td>Action potentials</td>
<td>Lower</td>
<td>Higher</td>
<td>Resting</td>
<td>Frequency of action potentials</td>
</tr>
</tbody>
</table>

- **Neutral**
- **Toward Kinocilium**
- **Away from Kinocilium**

Image by MIT OpenCourseWare.
VESTIBULAR ORIENTATION
Functioning of the Otoliths

Image by MIT OpenCourseWare.
VESTIBULAR ORIENTATION
Vestibular-Ocular and -Cervical Reflexes

Vestibular Nystagmus

• Compensatory movement of eyes opposite to head motion (slow-phase)
Vestibular Nystagmus

- Compensatory movement of eyes opposite to head motion (slow-phase)
- Designed to stabilize retinal inputs
- Can be driven by canals or otoliths
- Gain of nystagmus is highest in frequency range of natural head movements
- Nystagmus ceases in long-rotation turn; decays gradually thereafter
- Nystagmus, along with vestibular-cervical reflexes controlling the head, help provide a stabilized space while locomoting in the environment
VESTIBULAR ORIENTATION
Canal Limits in Sustained Turns

Perceived Angular Velocity
Cupular Deviation
Angular Velocity
Angular Acceleration

Time (seconds)

Sustained
In brief turns, canals effectively integrate angular acceleration into velocity signal!
VESTIBULAR ORIENTATION
Canal Limits in Sustained Turns

Perceived Angular Velocity
Cupular Deviation
Angular Velocity
Angular Acceleration

Sustained

Time (seconds)
In prolonged turns, canals only detect acceleration; velocity is consequently misperceived!
VESTIBULAR ORIENTATION
Canal “Percept” During Sustained Turning

1. “Straight-and-level” flight: Cupula in neutral position

2. Initial turn to left: Cupula deviated by endolymph inertia; leftward acceleration detected

3. Sustained turn to left: Cupula returns to neutral position as endolymph “catches up”; no turning detected

4. Return to “straight-and-level”: Cupula deviated by endolymph momentum, gradually restored; rightward turn perceived
VESTIBULAR ORIENTATION
Canal “Percept” During Sustained Turning

1. “Straight-and-level” flight:
 Cupula in neutral position

2. Initial turn to left:
 Cupula deviated by endolymph inertia; leftward acceleration detected

3. Sustained turn to left:
 Cupula returns to neutral position as endolymph “catches up”; no turning detected

4. Return to “straight-and-level”:
 Cupula deviated by endolymph momentum, gradually restored; rightward turn perceived
VESTIBULAR ORIENTATION
Canal “Percept” During Sustained Turning

1. “Straight-and-level” flight:
 Cupula in neutral position

2. Initial turn to left:
 Cupula deviated by endolymph inertia; leftward acceleration detected

3. Sustained turn to left:
 Cupula returns to neutral position as endolymph “catches up”; no turning detected

4. Return to “straight-and-level”:
 Cupula deviated by endolymph momentum, gradually restored; rightward turn perceived
VESTIBULAR ORIENTATION
Canal “Percept” During Sustained Turning

1. “Straight-and-level” flight: Cupula in neutral position

2. Initial turn to left: Cupula deviated by endolymph inertia; leftward acceleration detected

3. Sustained turn to left: Cupula returns to neutral position as endolymph “catches up”; no turning detected

4. Return to “straight-and-level”: Cupula deviated by endolymph momentum, gradually restored; rightward turn perceived
VESTIBULAR ORIENTATION
Otolith Ambiguity In Sustained Acceleration

Upright Resting

Backward Head Tilt

Forward Acceleration

Net Gravitoinertial Force
VESTIBULAR ORIENTATION
Otolith Ambiguity In Sustained Acceleration

Backward Head Tilt

Forward Acceleration

Net Gravitoinertial Force

50
VESTIBULAR ORIENTATION
Otolith Ambiguity In Sustained Acceleration

Backward Head Tilt

Forward Acceleration

Acceleration

Net Gravitoinertial Force
VESTIBULAR ORIENTATION
Otolith Ambiguity In Sustained Acceleration

Backward Head Tilt

Forward Acceleration

Acceleration

Net Gravitoinertial Force
VESTIBULAR ORIENTATION
Otolith Ambiguity In Sustained Acceleration
VESTIBULAR ORIENTATION

Otolith Ambiguity In Sustained Acceleration

Backward Head Tilt

Forward Acceleration

Acceleration

Net Gravitoinertial Force
SPATIAL ORIENTATION IN FLIGHT
Somatosensory Mechanisms

Golgi Tendon Organ

Muscle Spindle Organ

Free Nerve Ending

Pacinian Corpuscle

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse.
SPATIAL ORIENTATION IN FLIGHT
Motor Systems

<table>
<thead>
<tr>
<th>Lateral System</th>
<th>Ventromedial System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lateral corticospinal tract</td>
<td>Medial longitudinal tract</td>
</tr>
<tr>
<td>Rubrospinal tract</td>
<td>Lateral reticulospinal tract</td>
</tr>
<tr>
<td></td>
<td>Medial reticulospinal tract</td>
</tr>
<tr>
<td></td>
<td>Vestibulospinal tract</td>
</tr>
<tr>
<td></td>
<td>Tectospinal tract</td>
</tr>
<tr>
<td></td>
<td>Ventral corticospinal tract</td>
</tr>
</tbody>
</table>

(a) Intermediate zone
(b) Ventral zone
(c) Interneurons Motor neurons

Fingers
Arms
Body

Image by MIT OpenCourseWare.
SPATIAL ORIENTATION IN FLIGHT
Cognitive Factors

- Attentional Factors
- Sensory Integration
- Interpretation Based on Experience
- Interpretation Based on Expectancies
SUMMARY

• Spatial orientation relies on three major sensory systems
• Ambient vision, along with the vestibular system, determines the spatial orientation frame-of-reference
• Focal vision is not optimal for maintaining spatial orientation; too attention-demanding
• The vestibular system is not well-suited to detecting sustained accelerations and rotations
• Control of spatial orientation is not normally under voluntary cortical motor control
• Spatial orientation is ultimately a cognitive construct