Assignments

• Assignment:
 • Problem Set #2 due today, Wed. Sept. 22nd, 2010.

• Reading:
 • Today: [AIMA] Ch. 6.1, 24.3-5; Constraint Modeling.
 • Monday: [AIMA] Ch. 6.2-5; Constraint Satisfaction.
 • To Learn More: Constraint Processing, by Rina Dechter
 – Ch. 2: Constraint Networks
 – Ch. 3: Consistency Enforcing and Propagation
Outline

- Interpreting line diagrams
- Constraint satisfaction problems (CSP) [aka constraint programs (CP)].
- Solving CSPs
- Case study: Scheduling (Appendix)
Labeling Line Diagrams for Visual Interpretation

Input: Line drawing (a graph)
Physical constraints

Output: Consistent assignment of line (edge) types

- Surface orientation discontinuity
- Depth discontinuity
- Reflectance discontinuity

Huffman Clowes (1971): Interpret opaque, trihedral solids
Step 1: Label line types.

Requirement:
Labeling must extend to complex objects
Line Labeling as Constraint Programming

18 vertex labelings that are *physically realizable*

Huffman Clowes (1971): Interpretation of opaque, trihedral solids with no surface marks.

Waltz (1972): Compute labeling through local propagation.

Outline

• Interpreting line diagrams
 • Constraint modeling
 • Constraint propagation
• Constraint satisfaction problems (CSP) aka constraint programs (CP).
• Solving CSPs
• Case study: Scheduling (Appendix)
Modeling: Make Simplifying Assumptions

1. Limited line interpretations:
 No shadows or cracks.

2. Three-faced vertices:
 Intersection of exactly three object faces
 (e.g., no pyramid tops).

3. General position:
 Small perturbations of selected viewing points can not
 lead to a change in junction type.

Modeling: Systematically derive all realizable junction types

Consider:
• a three face vertex, which divides space into octants,
 • (not guaranteed to be at right angles), and
• all possible fillings of octants,
 viewed from all empty octants.
Modeling: Systematically derive all realizable junction types

- Case 1: View seven filled octants from the only empty octant.

Modeling: Systematically derive all realizable junction types

- Case 2a: View one filled octant from all empty upper octants….
Modeling: Systematically derive all realizable junction types

- Case 2b: View one filled octant from all empty lower octants.

Brian Williams, Fall 10
Outline

• Interpreting line diagrams
 • Constraint modeling
 • Constraint propagation
• Constraint satisfaction problems (CSP) aka constraint programs (CP).
• Solving CSPs
• Case study: Scheduling (Appendix)

Solution: Label Lines by Propagating Constraints

Brian Williams, Fall 10
Propagate starting with the background borders

Without background borders, interpretations become unstable.
Outline

• Interpreting line diagrams
• Constraint satisfaction problems (CSP) aka constraint programs (CP).
• Solving CSPs
• Case study: Scheduling (appendix)

Constraint Satisfaction Problems

4 Queens Problem:
Place 4 queens on a 4x4 chessboard so that no queen can attack another.

How do we formulate?

Variables: Chessboard positions
Domains: Queen 1-4 or blank
Constraints: Two positions on a line (vertical, horizontal, diagonal) cannot both be Q
Constraint Satisfaction Problems (CSP)

Input: A Constraint Satisfaction Problem is a triple \(<V,D,C>\), where:

- \(V\) is a set of variables \(V_i\)
- \(D\) is a set of variable domains,
 - The domain of variable \(V_i\) is denoted \(D_i\)
- \(C\) is a set of constraints on assignments to \(V\)
 - Each constraint \(C_i = <S_i, R_i>\) specifies allowed variable assignments.
 - \(S_i\), the constraint’s **scope**, is a subset of variables \(V\).
 - \(R_i\), the constraint’s **relation**, is a set of assignments to \(S_i\).

Output: A full assignment to \(V\), from elements of \(V\)’s domain, such that all constraints in \(C\) are satisfied.

Example: “Provide one A and two B’s.”

- \(V = \{A,B\}\), each with domain \(D_i = \{1,2\}\)
- \(C = \{\{A,B\}, \{1,2\}, \{1,1\}\}, \{A,B\}, \{1,2\}, \{2,2\}\}\)
 - “one A”
 - “two Bs”
- **Output:** \(<1,2>\) (for example)
Conventions

- List scope in subscript.
- Specify one constraint per scope.

Example: “Provide one A and two B’s.”
- $C = \{C_{AB}\}$
 - $C_{AB} = \{<1,2>\}$
- $C = \{C_A, C_B\}$
 - $C_A = \{<1>\}$
 - $C_B = \{<2>\}$

Good Encodings Are Essential: 4 Queens

4 Queens Problem:
Place 4 queens on a 4x4 chessboard so that no queen can attack another.

How big is the encoding?

- **Variables**
 - Chessboard positions
- **Domains**
 - Queen 1-4 or blank
- **Constraints**
 - Two positions on a line (vertical, horizontal, diagonal) cannot both be Q
Good Encodings Are Essential: 4 Queens

Place queens so that no queen can attack another.

What is a better encoding?

- Assume one queen per column.
- Determine what row each queen should be in.

Variables

\[Q_1, Q_2, Q_3, Q_4,\]

Domains

\[\{1, 2, 3, 4\}\]

Constraints

\[Q_i \neq Q_j\] "On different rows"

\[|Q_i - Q_j| \neq |i-j|\] "Stay off the diagonals"

Example

\[C_{1,2} = \{(1,3) (1,4) (2,4) (3,1) (4,1) (4,2)\}\]

Good Encodings Are Essential: 4 Queens

Place queens so that no queen can attack another.

Variables

\[Q_1, Q_2, Q_3, Q_4,\]

Domains

\[\{1, 2, 3, 4\}\]

Constraints

\[Q_i \neq Q_j\] "On different rows"

\[|Q_i - Q_j| \neq |i-j|\] "Stay off the diagonals"

Example:

\[C_{1,2} = \{(1,3) (1,4) (2,4) (3,1) (4,1) (4,2)\}\]

What is \[C_{13}\]?
A general class of CSPs

Finite Domain, Binary CSPs

• each constraint relates at most two variables.
• each variable domain is finite.

Property: all n-ary CSPs are reducible to binary CSPs.

Depict as a Constraint Graph

• Nodes (vertices) are variables.
• Arcs (edges) are binary constraints.

Example: Graph Coloring

Pick colors for map regions, without coloring adjacent regions with the same color

Variables

regions

Domains

allowed colors

Constraints

adjacent regions must have different colors
Outline

• Interpreting line problems
• Constraint satisfaction problems (CSP) aka constraint programs (CP).
• Solving CSPs
 • Arc-consistency and propagation
 • Analysis of constraint propagation (next lecture)
 • Search (next lecture)
• Case study: Scheduling (appendix)

Good News / Bad News

Good News
- very general & interesting family of problems.
- Problem formulation used extensively in autonomy and decision making applications.

Bad News
includes NP-Hard (intractable ?) problems
Algorithmic Design Paradigm

Solving CSPs involves a combination of:

1. **Inference**
 - Solve partially by eliminating values that can’t be part of any solution (*constraint propagation*).
 - Make implicit constraints explicit.

2. **Search**
 - Try alternative assignments against constraints.

Inference: Waltz *constraint propagation* for visual interpretation generalizes to *arc-consistency* and the AC-3 algorithm.

Directed Arc Consistency

Idea: Eliminate values of a variable domain that can *never satisfy* a specified constraint (an *arc*).

Definition: arc \(<x_i, x_j>\) is arc consistent if \(<x_i, x_j>\) and \(<x_j, x_i>\) are directed arc consistent.
Arc Consistency

\[X \sim Y \]

1.
2.
3.

1.
2.
3.

Definition: arc \(<x_i, x_j>\) is directed arc consistent if

- for every \(a_i \) in \(D_i \)
 - there exists some \(a_j \) in \(D_j \) such that
 - assignment \(<a_i, a_j>\) satisfies constraint \(C_{ij}\)
- \(\forall a_i \in D_i, \exists a_j \in D_j \) such that \(<a_i, a_j> \in C_{ij}\)
- \(\forall \) denotes “for all,” \(\exists \) denotes “there exists” and \(\in \) denotes “in.”
Revise: A directed arc consistency procedure

Definition: arc \(<x_i, x_j> \) is directed arc consistent if
\[
\forall a_i \in D_i, \exists a_j \in D_j \text{ such that } <a_i, a_j> \in C_{ij}
\]

Revise \((x_i, x_j)\)

Input: Variables \(x_i \) and \(x_j \) with domains \(D_i \) and \(D_j \) and constraint relation \(R_{ij} \).
Output: pruned \(D_i \), such that \(x_i \) is directed arc-consistent relative to \(x_j \).

1. for each \(a_i \in D_i \)
2. if there is no \(a_j \in D_j \) such that \(<a_i, a_j> \in R_{ij} \)
3. then delete \(a_i \) from \(D_i \).
4. endif
5. endfor

Constraint Processing,
by R. Dechter

pgs 54-6

Brian Williams, Fall 10

Full Arc Consistency over All Constraints via Constraint Propagation

Definition: arc \(<x_i, x_j> \) is directed arc consistent if
\[
\forall a_i \in D_i, \exists a_j \in D_j \text{ such that } <a_i, a_j> \in C_{ij}
\]

Constraint Propagation:
To achieve (directed) arc consistency over CSP:
1. For every arc \(C_{ij} \) in CSP, with tail domain \(D_i \), call Revise.
2. Repeat until quiescence:
 If an element was deleted from \(D_i \), then
 repeat Step 1 \hspace{1cm} (AC-1)

Brian Williams, Fall 10
Full Arc-Consistency via AC-1

AC-1(CSP)
Input: A constraint satisfaction problem CSP = <X, D, C>.
Output: CSP', the largest arc-consistent subset of CSP.

1. repeat
2. for every c_{ij} \in C, For every arc,
3. Revise(x_i, x_j) prune head
4. Revise(x_j, x_i) and tail domains.
5. endfor
6. until no domain is changed.

Full Arc Consistency via Constraint Propagation

Definition: arc <x_i, x_j> is directed arc consistent if
\forall a_i \in D_i, \exists a_j \in D_j such that <a_i, a_j> \in C_{ij}

Constraint Propagation:
To achieve (directed) arc consistency over CSP:
1. For every arc C_{ij} in CSP, with tail domain D_i, call Revise.
2. Repeat until quiescence:
 If an element was deleted from D_i, then
 repeat Step 1 (AC-1)
 OR call Revise on each arc with head D_i (AC-3)
 (use FIFO Q, remove duplicates)

Brian Williams, Fall 10
Full Arc-Consistency via AC-3 (Waltz CP)

AC-3(CSP)

Input: A constraint satisfaction problem CSP = \(<X, D, C> \).

Output: CSP', the largest arc-consistent subset of CSP.

1. for every \(c_{ij} \in C \),
2. \(queue \leftarrow queue \cup \{<x_i, x_j>, <x_j, x_i>\} \)
3. endfor
4. while \(queue \neq \{\} \)
5. select and delete arc \(<x_i, x_j> \) from queue
6. Revise\((x_i, x_j) \)
7. if Revise\((x_i, x_j) \) caused a change in \(D_i \)
8. then \(queue \leftarrow queue \cup \{<x_k, x_i> | k \neq i, k \neq j\} \)
9. endif
10. endwhile

Constraint Propagation Example AC-3

Graph Coloring

Initial Domains

Each undirected arc denotes two directed arcs.
Constraint Propagation Example AC-3

Graph Coloring

Initial Domains

<table>
<thead>
<tr>
<th>Arc examined</th>
<th>Value deleted</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Arcs to examine

$V_1 - V_2, V_1 - V_3, V_2 - V_3$

- Introduce queue of arcs to be examined.
- Start by adding all arcs to the queue.

• $V_i - V_j$ denotes two arcs, between V_i and V_j.
• $V_i > V_j$ denotes an arc from V_i to V_j. 41
Constraint Propagation Example AC-3

Graph Coloring
Initial Domains

<table>
<thead>
<tr>
<th>Arc examined</th>
<th>Value deleted</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_1 > V_2$</td>
<td>none</td>
</tr>
</tbody>
</table>

Arcs to examine

$V_2 > V_1, V_1 - V_3, V_2 - V_3$

• Delete unmentioned tail values
• $V_i - V_j$ denotes two arcs, between V_i and V_j.
• $V_i > V_j$ denotes an arc from V_i to V_j.

Constraint Propagation Example AC-3

Graph Coloring
Initial Domains

<table>
<thead>
<tr>
<th>Arc examined</th>
<th>Value deleted</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_1 > V_2$</td>
<td>none</td>
</tr>
</tbody>
</table>

Arcs to examine

$V_2 > V_1, V_1 - V_3, V_2 - V_3$

• Delete unmentioned tail values
• $V_i - V_j$ denotes two arcs, between V_i and V_j.
• $V_i > V_j$ denotes an arc from V_i to V_j.
Constraint Propagation Example AC-3

Graph Coloring
Initial Domains

<table>
<thead>
<tr>
<th>Arc examined</th>
<th>Value deleted</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_1 > V_2$</td>
<td>none</td>
</tr>
<tr>
<td>$V_2 > V_1$</td>
<td>none</td>
</tr>
</tbody>
</table>

Arcs to examine

- $V_1 - V_3$, $V_2 - V_3$

- Delete unmentioned tail values
- $V_i - V_j$ denotes two arcs, between V_i and V_j.
- $V_i > V_j$ denotes an arc from V_i to V_j.

46
Constraint Propagation Example AC-3

Graph Coloring
Initial Domains

<table>
<thead>
<tr>
<th>Arc examined</th>
<th>Value deleted</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_1 - V_2$</td>
<td>none</td>
</tr>
</tbody>
</table>

Arcs to examine
$V_1 - V_3, V_2 - V_3$

• Delete unmentioned tail values
• $V_i - V_j$ denotes two arcs, between V_i and V_j.
• $V_i > V_j$ denotes an arc from V_i to V_j.

Constraint Propagation Example AC-3

Graph Coloring
Initial Domains

<table>
<thead>
<tr>
<th>Arc examined</th>
<th>Value deleted</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_1 - V_2$</td>
<td>none</td>
</tr>
<tr>
<td>$V_i > V_j$</td>
<td>none</td>
</tr>
</tbody>
</table>

Arcs to examine
$V_3 > V_1, V_2 - V_3$

• Delete unmentioned tail values
• $V_i - V_j$ denotes two arcs, between V_i and V_j.
• $V_i > V_j$ denotes an arc from V_i to V_j.
Constraint Propagation Example AC-3

Graph Coloring

Initial Domains

<table>
<thead>
<tr>
<th>Arc examined</th>
<th>Value deleted</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_1 - V_2$</td>
<td>none</td>
</tr>
<tr>
<td>$V_1 > V_3$</td>
<td>$V_1(G)$</td>
</tr>
</tbody>
</table>

Arcs to examine

$V_3 > V_1, V_2 - V_3$

IF An element of a variable’s domain is removed,

THEN add all arcs to that variable to the examination queue.

Constraint Propagation Example AC-3

Graph Coloring

Initial Domains

<table>
<thead>
<tr>
<th>Arc examined</th>
<th>Value deleted</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_1 - V_2$</td>
<td>none</td>
</tr>
<tr>
<td>$V_1 > V_3$</td>
<td>$V_1(G)$</td>
</tr>
</tbody>
</table>

Arcs to examine

$V_3 > V_1, V_2 - V_3, V_2 > V_1, V_1 > V_1$

IF An element of a variable’s domain is removed,

THEN add all arcs to that variable to the examination queue.
Constraint Propagation Example AC-3

Graph Coloring

Initial Domains

<table>
<thead>
<tr>
<th>Arc examined</th>
<th>Value deleted</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_1 - V_2$</td>
<td>none</td>
</tr>
<tr>
<td>$V_1 > V_3$</td>
<td>$V_1(G)$</td>
</tr>
<tr>
<td>$V_3 > V_1$</td>
<td>none</td>
</tr>
</tbody>
</table>

• Delete unmentioned tail values

Arcs to examine

$V_2 - V_3, V_2 > V_1$

Constraint Propagation Example AC-3

Graph Coloring

Initial Domains

<table>
<thead>
<tr>
<th>Arc examined</th>
<th>Value deleted</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_1 - V_2$</td>
<td>none</td>
</tr>
<tr>
<td>$V_1 > V_3$</td>
<td>$V_1(G)$</td>
</tr>
<tr>
<td>$V_3 > V_1$</td>
<td>none</td>
</tr>
</tbody>
</table>

• Delete unmentioned tail values

Arcs to examine

$V_2 - V_3, V_2 > V_1$
Constraint Propagation Example AC-3

Graph Coloring
Initial Domains

<table>
<thead>
<tr>
<th>Arc examined</th>
<th>Value deleted</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_1 - V_2)</td>
<td>none</td>
</tr>
<tr>
<td>(V_1 - V_3)</td>
<td>(V_1(G))</td>
</tr>
</tbody>
</table>

Arcs to examine

\(V_2 - V_3, V_2 > V_1 \)

• Delete unmentioned tail values

IF An element of a variable's domain is removed, THEN add all arcs to that variable to the examination queue.

Arc examined
Value deleted

\(V_1 - V_2 \) none
\(V_1 - V_3 \) \(V_1(G) \)
\(V_2 > V_3 \)

Arcs to examine

\(V_3 > V_2, V_2 > V_1 \)

• Delete unmentioned tail values

IF An element of a variable's domain is removed, THEN add all arcs to that variable to the examination queue.
Constraint Propagation Example AC-3

Graph Coloring
Initial Domains

<table>
<thead>
<tr>
<th>Arc examined</th>
<th>Value deleted</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_1 - V_2$</td>
<td>none</td>
</tr>
<tr>
<td>$V_1 - V_3$</td>
<td>$V_3(G)$</td>
</tr>
<tr>
<td>$V_2 > V_3$</td>
<td>$V_2(G)$</td>
</tr>
</tbody>
</table>

• Delete unmentioned tail values

IF An element of a variable's domain is removed,
THEN add all arcs to that variable to the examination queue.

Arcs to examine
$V_3 > V_3$, $V_2 > V_1$

Constraint Propagation Example AC-3

Graph Coloring
Initial Domains

<table>
<thead>
<tr>
<th>Arc examined</th>
<th>Value deleted</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_1 - V_2$</td>
<td>none</td>
</tr>
<tr>
<td>$V_1 - V_3$</td>
<td>$V_3(G)$</td>
</tr>
<tr>
<td>$V_2 > V_3$</td>
<td>$V_2(G)$</td>
</tr>
</tbody>
</table>

• Delete unmentioned tail values

IF An element of a variable's domain is removed,
THEN add all arcs to that variable to the examination queue.
Constraint Propagation Example AC-3

Graph Coloring
Initial Domains

<table>
<thead>
<tr>
<th>Arc examined</th>
<th>Value deleted</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_1 - V_2$</td>
<td>none</td>
</tr>
<tr>
<td>$V_1 - V_3$</td>
<td>$V_3(G)$</td>
</tr>
<tr>
<td>$V_2 > V_3$</td>
<td>$V_3(G)$</td>
</tr>
</tbody>
</table>

• Delete unmentioned tail values

IF An element of a variable’s domain is removed,
THEN add all arcs to that variable to the examination queue.

Arcs to examine
$V_3 > V_2$, $V_2 > V_1$, $V_1 > V_2$
Constraint Propagation Example AC-3

Graph Coloring

Initial Domains

<table>
<thead>
<tr>
<th>Arc examined</th>
<th>Value deleted</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_1 - V_2$</td>
<td>none</td>
</tr>
<tr>
<td>$V_1 - V_3$</td>
<td>$V_2(G)$</td>
</tr>
<tr>
<td>$V_2 - V_3$</td>
<td>$V_3(G)$</td>
</tr>
<tr>
<td>$V_3 - V_2$</td>
<td>none</td>
</tr>
</tbody>
</table>

- Delete unmentioned tail values

Arcs to examine

- $V_2 > V_1$, $V_3 > V_2$

Arcs to examine

- $V_2 > V_1$, $V_3 > V_2$

Delete unmentioned tail values

IF An element of a variable's domain is removed, **THEN** add all arcs to that variable to the examination queue.
Constraint Propagation Example AC-3

Graph Coloring
Initial Domains

<table>
<thead>
<tr>
<th>Arc examined</th>
<th>Value deleted</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_1 - V_2$</td>
<td>none</td>
</tr>
<tr>
<td>$V_1 - V_3$</td>
<td>$V_i(G)$</td>
</tr>
<tr>
<td>$V_2 - V_3$</td>
<td>$V_j(G)$</td>
</tr>
<tr>
<td>$V_2 > V_1$</td>
<td>none</td>
</tr>
</tbody>
</table>

• Delete unmentioned tail values

IF An element of a variable’s domain is removed, THEN add all arcs to that variable to the examination queue.
Constraint Propagation Example AC-3

Graph Coloring
Initial Domains

<table>
<thead>
<tr>
<th>Arc examined</th>
<th>Value deleted</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_1 - V_2$</td>
<td>none</td>
</tr>
<tr>
<td>$V_1 - V_3$</td>
<td>$V_1(G)$</td>
</tr>
<tr>
<td>$V_2 - V_3$</td>
<td>$V_2(G)$</td>
</tr>
<tr>
<td>$V_2 > V_1$</td>
<td>none</td>
</tr>
<tr>
<td>$V_1 > V_2$</td>
<td>$V_1(R)$</td>
</tr>
</tbody>
</table>

Delete unmentioned tail values

IF An element of a variable's domain is removed,
THEN add all arcs to that variable to the examination queue.
Constraint Propagation Example AC-3

Graph Coloring

Initial Domains

<table>
<thead>
<tr>
<th>Arc examined</th>
<th>Value deleted</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_1 - V_2$</td>
<td>none</td>
</tr>
<tr>
<td>$V_1 - V_3$</td>
<td>$V_i(G)$</td>
</tr>
<tr>
<td>$V_2 - V_3$</td>
<td>$V_j(G)$</td>
</tr>
<tr>
<td>$V_2 > V_1$</td>
<td>none</td>
</tr>
<tr>
<td>$V_1 > V_2$</td>
<td>$V_i(R)$</td>
</tr>
</tbody>
</table>

• Delete unmentioned tail values

IF An element of a variable's domain is removed,
THEN add all arcs to that variable to the examination queue.
Constraint Propagation Example AC-3

Graph Coloring

Initial Domains

<table>
<thead>
<tr>
<th>Arc examined</th>
<th>Value deleted</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_1 - V_2$</td>
<td>none</td>
</tr>
<tr>
<td>$V_1 - V_3$</td>
<td>$V_i(G)$</td>
</tr>
<tr>
<td>$V_2 - V_3$</td>
<td>$V_i(G)$</td>
</tr>
<tr>
<td>$V_2 - V_1$</td>
<td>$V_i(R)$</td>
</tr>
<tr>
<td>$V_2 > V_1$</td>
<td>none</td>
</tr>
</tbody>
</table>

Delete unmentioned tail values

Arcs to examine

- $V_3 > V_1$

IF An element of a variable's domain is removed,

THEN add all arcs to that variable to the examination queue.
Constraint Propagation Example AC-3

Graph Coloring

Initial Domains

<table>
<thead>
<tr>
<th>Arc examined</th>
<th>Value deleted</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_1 - V_2$</td>
<td>none</td>
</tr>
<tr>
<td>$V_1 - V_3$</td>
<td>$V_1(G)$</td>
</tr>
<tr>
<td>$V_2 - V_3$</td>
<td>$V_2(G)$</td>
</tr>
<tr>
<td>$V_2 - V_1$</td>
<td>$V_1(R)$</td>
</tr>
<tr>
<td>$V_2 > V_1$</td>
<td>none</td>
</tr>
<tr>
<td>$V_3 > V_1$</td>
<td>none</td>
</tr>
</tbody>
</table>

* Delete unmentioned tail values

Arcs to examine

IF An element of a variable’s domain is removed,

THEN add all arcs to that variable to the examination queue.

Arcs to examine

IF examination queue is empty

THEN arc (pairwise) consistent.
Next: To Solve CSPs we combine arc consistency and search

1. Arc consistency (Constraint propagation),
 - Eliminates values that are shown locally to not be a part of any solution.
2. Search
 - Explores consequences of committing to particular assignments.

Methods Incorporating Search:
- Standard Search
- BackTrack Search (BT)
- BT with Forward Checking (FC)
- Dynamic Variable Ordering (DVO)
- Iterative Repair
- Backjumping (BJ)

Outline
- Interpreting line diagrams
- Constraint satisfaction problem (CSPS) aka constraint programs (CP).
- Solving CSPs
- Case study: Scheduling (appendix)
Real World Example: Scheduling as a CSP

Choose time of activities:
- Observations by the Hubble telescope.
- Jobs performed on machine tools.
- Classes taken for degree.

Variables are activities

Domains Are possible start times (or “chunks” of time)

Constraints
1. Activities that use the same resource cannot overlap in time, and
2. Prerequisites are satisfied.

Case Study: Course Scheduling

Given:
- 32 required courses (8.01, 8.02, . . . , 16.410), and
- 8 terms (Fall 1, Spring 1, . . . , Spring 4).

Find: a legal schedule.

Constraints
- Pre-requisites satisfied,
- Courses offered only during certain terms,
- A limited number of courses can be taken per term (say 4), and
- Avoid time conflicts between courses.

Note, traditional CSPs are not for expressing (soft) preferences e.g. minimize difficulty, balance subject areas, etc.

But see recent research on valued CSPs!
Alternative formulations for variables and values

<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>DOMAINS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. 1 var per Term
 (Fall 1) (Spring 1)
 (Fall 2) (Spring 2) . . .</td>
<td>All legal combinations of 4 courses, all offered during that term.</td>
</tr>
<tr>
<td>B. 1 var per Term-Slot
 subdivide each term into 4 course slots:</td>
<td>All courses offered during that term.</td>
</tr>
<tr>
<td>(Fall 1,1) (Fall 1, 2)
 (Fall1, 3) (Fall 1, 4)</td>
<td>Terms or term-slots.</td>
</tr>
<tr>
<td>C. 1 var per Course
 Terms or term-slots.</td>
<td>Term-slots make it easier to express the constraint limiting the number of courses per term.</td>
</tr>
</tbody>
</table>

Encoding Constraints

Assume: Variables = Courses, Domains = term-slots

Constraints:

- **Prerequisite** ➔
 - 1.00 ➔ 16.410
 - At least 1 term before
 - At least 1 term after
 - For pairs of courses that must be ordered.

- **Courses offered only during certain terms** ➔
 - Filter domain

- **Limit # courses** ➔
 - Term-slots not equal
 - for all pairs of vars.
 - Use term-slots only once

- **Avoid time conflicts** ➔
 - term not equal
 - Brian Williams, Fall 10
 - For course pairs offered at same or overlapping times