Propositional Logic and Satisfiability

Slides draw upon material from:
Prof. Bart Selman
Cornell University

Brian C. Williams
16.410-13
October 13th, 2010

Assignments

• Assignment:
 • Problem Set #5: Activity Planning, due today Wednesday, October 13th, 2010.
 • Problem Set #6: Propositional Logic and Satisfiability, out today; due October 27th, 2010 (in 2 weeks).

• Reading:
 • Today: [AIMA] Ch. 7, 8
 • Monday: TBD

• Exam:
 • Mid-Term - October 20th.
Hidden Failures Require Reasoning from a Model:

Symptoms:
- Engine temp sensor high
- LOX level low
- GN&C detects low thrust
- H2 level possibly low

Problem: Liquid hydrogen leak

Effect:
- LH2 used to cool engine
- Engine runs hot
- Consumes more LOX

How Do We Reason About Complex Systems using Commonsense Models?

Task: Monitor engine operation
- You open the valves, and observe . . .
- Is the engine ok?
- Could the valve in red be stuck closed?

Pressure
- $\text{Pressure}_2 = \text{nominal}$
- $\text{Flow}_2 = \text{zero}$

Oxidizer tank
- $\text{Pressure}_1 = \text{nominal}$
- $\text{Flow}_1 = \text{zero}$

Fuel tank
- $\text{Pressure}_2 = \text{nominal}$

Main Engines

Model-based Reasoning:
- Reason from a single model to operate, diagnose, repair...
- **Model using Logic.**
- **Reason using Sat.**
Modeling an Engine in Propositional Logic

“An Engine E1 can either be okay, or broken in some unknown way. When E1 is okay, it will thrust when there is a flow through V1 and V2.”

\[
\text{mode}(E1) = \text{ok or mode}(E1) = \text{unknown} \quad \text{and}
\]

\[
\text{not (mode}(E1) = \text{ok and mode}(E1) = \text{unknown}) \quad \text{and}
\]

\[
\text{mode}(E1) = \text{ok implies}
\]

\[
\text{thrust}(E1) = \text{on if and only if flow}(V1) = \text{on and flow}(V2) = \text{on})
\]

Reasoning From the Model

Monitoring:
Are the observations O consistent with model M?

Fault Diagnosis:
What fault modes of M are consistent with O?

Reconfiguration:
What component modes of M produce behavior G?

\[\Rightarrow \quad \text{Propositional Satisfiability:}
\]

Find a truth assignment that satisfies some logical sentence S:

1. Reduce S to clausal form.
2. Perform search similar to MAC = (BT+CP)
 \[\text{[Davis, Logmann & Loveland, 1962]}\]

Brian Williams, Fall 10
Propositional Satisfiability

Find a truth assignment that satisfies logical sentence T:
• Reduce sentence T to clausal form.
• Perform search similar to MAC = (BT+CP)
 [Davis, Logmann & Loveland, 1962]

Propositional satisfiability testing
 1990: 100 variables / 200 clauses (constraints)
 1998: 10,000 - 100,000 vars / 10^6 clauses
 2010: millions

Novel applications:
 e.g. diagnosis, planning, software verification, circuit testing, machine learning, and protein folding

What Formal Languages Exist for Describing Constraints?

• Algebra values of variables
• Probability degree of belief
• Propositional logic truth of facts
• Temporal logic time,
• Modal logics knowledge, belief …
• First order logic facts,objects,relations
Outline

• Propositional Logic
 • Syntax
 • Semantics
 • Reduction to Clauses
• Propositional Satisfiability
• Empirical, Average Case Analysis
• Appendices

Logic in General

• Logic
 • A formal language for representing information that can be used to draw conclusions.
 • About the truth of statements and their consequences.
• Syntax
 • Defines the expressible sentences in the language.
• Semantics
 • Defines the “meaning” of these sentences
 \models truth of a sentence in some world.
Logic Example: Arithmetic

• **Syntax** – legal sentences
 - “X + 2 > Y” is a legal sentence.
 - “X 2 + Y >” is not a legal sentence.

• **Semantics** - truth in world
 - “X + 2 > Y” is true iff the number X + 2 is not less than or equal to the number Y.
 - “X + 2 > Y” is true in a world where X = 7, Y = 1.
 - “X + 2 > Y” is false in a world where X = 0, Y = 6.

Propositional Logic: Syntax

Propositions
- A statement that is true or false
 - (valve v1)
- Assignments to finite domain variables - State Logic
 - (= voltage high)

Propositional Sentences (S)
- S ::= proposition |
 - (NOT S) |
 - (OR S1 ... Sn) |
 - (AND S1 ... Sn)

Defined Constructs
- (implies S1 S2) => ((not S1) OR S2)
- (IFF S1 S2) => (AND (IMPLIES S1 S2)(IMPLIES S2 S1))
Propositional Sentences: Engine Example

$(\text{mode}(E1) = \text{ok} \text{ or } \text{mode}(E1) = \text{unknown}) \text{ and } \neg (\text{mode}(E1) = \text{ok} \text{ and } \text{mode}(E1) = \text{unknown}) \text{ and }$

$(\text{mode}(E1) = \text{ok} \text{ implies }\neg (\text{thrust}(E1) = \text{on} \text{ if and only if }\neg (\text{flow}(V1) = \text{on} \text{ and } \text{flow}(V2) = \text{on})))$

Outline

- Propositional Logic
 - Syntax
 - Semantics
 - Reduction to Clauses
- Propositional Satisfiability
- Empirical, Average Case Analysis
- Appendices
Propositional Logic: Semantics

Interpretation I of sentence S assigns true or false to every proposition P in S.

- $S = (A \text{ or } B) \text{ and } C$
- $I = \{A=True, \ B=False, \ C=True\}$
- $I = \{A=False, \ B=True, \ C=False\}$

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td></td>
<td>True</td>
<td>True</td>
<td>False</td>
</tr>
<tr>
<td></td>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td></td>
<td>True</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td></td>
<td>False</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td></td>
<td>False</td>
<td>True</td>
<td>False</td>
</tr>
<tr>
<td></td>
<td>False</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td></td>
<td>False</td>
<td>False</td>
<td>False</td>
</tr>
</tbody>
</table>

All Interpretations

Propositional Logic: Semantics

The truth of sentence S wrt interpretation I is defined by a composition of Boolean operators applied to I:

- “Not S” is True iff “S” is False

<table>
<thead>
<tr>
<th>Not S</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
</tr>
</tbody>
</table>

Brian Williams, Fall 10
Propositional Logic: Semantics

The truth of sentence S_i wrt Interpretation I:

- “Not S” is True iff “S” is False
- “S_1 and S_2” is True iff “S_1” is True and “S_2” is True
- “S_1 or S_2” is True iff “S_1” is True or “S_2” is True

<table>
<thead>
<tr>
<th>S_1 and S_2</th>
<th>S_1</th>
<th>S_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>True</td>
<td>False</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S_1 or S_2</th>
<th>S_1</th>
<th>S_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>True</td>
<td>True</td>
<td>False</td>
</tr>
<tr>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>False</td>
<td>False</td>
<td>False</td>
</tr>
</tbody>
</table>

Brian Williams, Fall 10
Example: Determining the Truth of a Sentence

(mode(E1) = ok implies
[(thrust(E1) = on if and only if (flow(V1) = on and flow(V2) = on)) and
(mode(E1) = ok or mode(E1) = unknown) and
not (mode(E1) = ok and mode(E1) = unknown)])

Interpretation:
mode(E1) = ok is True
thrust(E1) = on is False
flow(V1) = on is True
flow(V2) = on is False
mode(E1) = unknown is False

Example: Determining the Truth of a Sentence

(True implies
[(False if and only if (True and False)) and
(True or False) and
not (True and False)])

Interpretation:
mode(E1) = ok is True
thrust(E1) = on is False
flow(V1) = on is True
flow(V2) = on is False
mode(E1) = unknown is False
Example: Determining the Truth of a Sentence

(\text{True} \text{ implies} [\text{False} \text{ if and only if} (\text{True} \text{ and} \text{False})] \text{ and}
(\text{True} \text{ or} \text{False}) \text{ and}
\text{not} (\text{True} \text{ and} \text{False})]

Interpretation:

- mode(E1) = ok \quad \text{is True}
- thrust(E1) = on \quad \text{is False}
- flow(V1) = on \quad \text{is True}
- flow(V2) = on \quad \text{is False}
- mode(E1) = unknown \quad \text{is False}

Brian Williams, Fall 10
Example: Determining the Truth of a Sentence

(True implies
 [(False if and only if (True and False)) and
 (True or False) and
 True])

Interpretation:
 mode(E1) = ok is True
 thrust(E1) = on is False
 flow(V1) = on is True
 flow(V2) = on is False
 mode(E1) = unknown is False

Example: Determining the Truth of a Sentence

(True implies
 [(False if and only if False) and
 True and
 True])

Interpretation:
 mode(E1) = ok is True
 thrust(E1) = on is False
 flow(V1) = on is True
 flow(V2) = on is False
 mode(E1) = unknown is False
Example: Determining the Truth of a Sentence

(True implies
 [(False if and only if False) and
 True and
 True])

Interpretation:

<table>
<thead>
<tr>
<th>Condition</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>mode(E1) = ok</td>
<td>is True</td>
</tr>
<tr>
<td>thrust(E1) = on</td>
<td>is False</td>
</tr>
<tr>
<td>flow(V1) = on</td>
<td>is True</td>
</tr>
<tr>
<td>flow(V2) = on</td>
<td>is False</td>
</tr>
<tr>
<td>mode(E1) = unknown</td>
<td>is False</td>
</tr>
</tbody>
</table>

Example: Determining the Truth of a Sentence

(True implies
 [(False implies False) and (False implies False)) and
 True and
 True])

Interpretation:

<table>
<thead>
<tr>
<th>Condition</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>mode(E1) = ok</td>
<td>is True</td>
</tr>
<tr>
<td>thrust(E1) = on</td>
<td>is False</td>
</tr>
<tr>
<td>flow(V1) = on</td>
<td>is True</td>
</tr>
<tr>
<td>flow(V2) = on</td>
<td>is False</td>
</tr>
<tr>
<td>mode(E1) = unknown</td>
<td>is False</td>
</tr>
</tbody>
</table>
Example: Determining the Truth of a Sentence

(True implies
 [(not False or False) and (not False or False)) and
 True and
 True])

Interpretation:
 mode(E1) = ok is True
 thrust(E1) = on is False
 flow(V1) = on is True
 flow(V2) = on is False
 mode(E1) = unknown is False

Example: Determining the Truth of a Sentence

(True implies
 [(True or False) and (True or False)) and
 True and
 True])

Interpretation:
 mode(E1) = ok is True
 thrust(E1) = on is False
 flow(V1) = on is True
 flow(V2) = on is False
 mode(E1) = unknown is False
Example: Determining the Truth of a Sentence

(True implies
 (True and True) and
 True and
 True)

Interpretation:
- mode(E1) = ok is True
- thrust(E1) = on is False
- flow(V1) = on is True
- flow(V2) = on is False
- mode(E1) = unknown is False

Brian Williams, Fall 10

Example: Determining the Truth of a Sentence

(True implies
 (True and True) and
 True and
 True)

Interpretation:
- mode(E1) = ok is True
- thrust(E1) = on is False
- flow(V1) = on is True
- flow(V2) = on is False
- mode(E1) = unknown is False

Brian Williams, Fall 10
Example: Determining the Truth of a Sentence

(True implies True)

Interpretation:

- mode(E1) = ok is True
- thrust(E1) = on is False
- flow(V1) = on is True
- flow(V2) = on is False
- mode(E1) = unknown is False

Example: Determining the Truth of a Sentence

(not True or True)

Interpretation:

- mode(E1) = ok is True
- thrust(E1) = on is False
- flow(V1) = on is True
- flow(V2) = on is False
- mode(E1) = unknown is False
Example: Determining the Truth of a Sentence

(False or True)

Interpretation:
- mode(E1) = ok is True
- thrust(E1) = on is False
- flow(V1) = on is True
- flow(V2) = on is False
- mode(E1) = unknown is False

Brian Williams, Fall 10

Example: Determining the Truth of a Sentence

True!

If a sentence S evaluates to True in interpretation I, then:
- “I satisfies S”
- “I is a Model of S”

Interpretation:
- mode(E1) = ok is True
- thrust(E1) = on is False
- flow(V1) = on is True
- flow(V2) = on is False
- mode(E1) = unknown is False

Brian Williams, Fall 10
Satisfiability versus Validity

Satisfiable

A sentence is satisfiable if there is an interpretation (a truth assignment) that makes the clause true.

- (not A or B) is satisfiable.
- (A implies not B) and (A implies B) is unsatisfiable.

Valid

A sentence is valid if it is true for all interpretations.

- Is (not A or A or B) valid?
 Yes, it is valid over all possible interpretations.
- Is (A or B) valid with respect to the interpretations {A=true, B=false} and {A=false, B=false}?

Outline

- Propositional Logic
 - Syntax
 - Semantics
 - Reduction to Clauses
- Propositional Satisfiability
- Appendices
Propositional Clauses: A Simpler Form

- Literal: A proposition or its negation.
 - B, Not A
- Clause: A disjunction (“or”) of literals.
 - (not A or B or E)
- Conjunctive Normal Form:
 A conjunction (“and”) of clauses.
 - \(\Phi = (A \lor B \lor C) \land (\neg A \lor B \lor E) \land (\neg B \lor C \lor D) \)
 - Represented by a set of clauses.

Reduction to Clausal Form: Engine Example

\[(\text{mode}(E1) = \text{ok implies } \text{thrust}(E1) = \text{on iff } (\text{flow}(V1) = \text{on and flow}(V2) = \text{on})) \land \]
\[(\text{mode}(E1) = \text{ok or mode}(E1) = \text{unknown}) \land \]
\[\neg (\text{mode}(E1) = \text{ok and mode}(E1) = \text{unknown}) \]

- not (mode(E1) = ok) or not (thrust(E1) = on) or flow(V1) = on;
- not (mode(E1) = ok) or not (thrust(E1) = on) or flow(V2) = on;
- not (mode(E1) = ok) or not (flow(V1) = on) or not (flow(V2) = on)
 or thrust(E1) = on;
- mode(E1) = ok or mode(E1) = unknown;
- not (mode(E1) = ok) or not (mode(E1) = unknown);
Reducing Propositional Formula to Clauses (CNF)

See Appendix for Detailed Example:

1) Eliminate iff and implies
 - E1 iff E2 => (E1 implies E2) and (E2 implies E1)
 - E1 implies E2 => not E1 or E2

2) Move negations in, towards propositions, using De Morgan’s Theorem:
 - not (E1 and E2) => (not E1) or (not E2)
 - not (E1 or E2) => (not E1) and (not E2)
 - not (not E1) => E1

3) Move conjunctions out using Distributivity
 - E1 or (E2 and E3) => (E1 or E2) and (E1 or E3)

Outline

- Propositional Logic
 - Syntax
 - Semantics
 - Reduction to Clauses
- Propositional Satisfiability
- Empirical, Average Case Analysis
- Appendices
Propositional Satisfiability

Input: A Propositional Satisfiability Problem is a pair \(<P, \Phi>\), where:
- \(P\) is a finite set of propositions.
- \(\Phi\) is a propositional sentence over \(P\)
 - We assume it is reduced to a set of clauses.

Output: True iff there exists a model of \(\Phi\).

Is an instance of a CSP:
- Variables: Propositions
- Domain: \{True, False\}
- Constraints: Clauses

Models of \(<P, \Phi>\)

- An interpretation is a truth assignment to all propositions \(P\).
- A model is an interpretation such that all clauses are satisfied:
 - A clause is satisfied iff at least one literal is true.
 - A clause is violated iff all literals are false.

Example:
C1: Not A or B
C2: Not C or A
C3: Not B or C
Testing Satisfiability of \(<P, \Phi >\)

1. Apply systematic, complete procedure
 • BT + unit propagation, shortest clause heuristic
 - [Davis, Logmann, & Loveland 1962; Crawford & Auton 1997; Nayak & Williams, 1997]

2. Apply stochastic, incomplete procedure
 • [Minton et al. 90; Selman et al. 1993] – see Appendix

3. Apply exhaustive clausal resolution
 • [Davis, Putnam 1960; Dechter Rish 1994]
Outline

- Propositional Logic
- Propositional Satisfiability
 - Backtrack Search
 - Unit Propagation
 - DPLL: Unit Propagation + Backtrack Search
- Empirical, Average Case Analysis
- Appendices

Propositional Satisfiability using Backtrack Search

- Assign true or false to an unassigned proposition.
- Backtrack as soon as a clause is violated.

Example:
- C1: Not A or B \[\text{satisfied}\]
- C2: Not C or A \[\text{satisfied}\]
- C3: Not B or C \[\text{satisfied}\]
Propositional Satisfiability using Backtrack Search

- Assign true or false to an unassigned proposition.
- Backtrack as soon as a clause is violated.

Example:
- C1: Not A or B
- C2: Not C or A
- C3: Not B or C

Brian Williams, Fall 10
Propositional Satisfiability using Backtrack Search

- Assign true or false to an unassigned proposition.
- Backtrack as soon as a clause is violated.

Example:
- C1: Not A or B
- C2: Not C or A
- C3: Not B or C

Brian Williams, Fall 10
Propositional Satisfiability using Backtrack Search

• Assign true or false to an unassigned proposition.
• Backtrack as soon as a clause is violated.

Example:
• C1: Not A or B
 - F
 - T
• C2: Not C or A
 - F
 - T
• C3: Not B or C
 - F
 - T

Brian Williams, Fall 10
Clausal Backtrack Search: Recursive Formulation

Procedure: $BT(\Phi, A)$

Input: A *cnf* theory Φ, An assignment A to some propositions in Φ.

Output: true if Φ is satisfiable; false otherwise.

If a clause in Φ is violated, Return false;
Else If all propositions in Φ are assigned by A, Return true;
Else $Q =$ some proposition in Φ unassigned by A;
 Return ($BT(\Phi, A[Q = True])$ or $BT(\Phi, A[Q = False])$)

Outline

- Propositional Logic
- Propositional Satisfiability
 - Backtrack Search
 - Unit Propagation
 - DPLL: Unit Propagation + Backtrack Search
- Empirical, Average Case Analysis
- Appendices
Unit Clause Resolution

Idea: Apply arc consistency (AC-3) to binary clauses

Clause: (not A or B)

\[\begin{array}{cc}
A & \text{not} \ A \\
T & F \\
B & \text{not} \ B \\
T & F \\
\end{array} \]

Unit clause resolution (aka unit propagation rule):
If all literals are false save L, then assign true to L:

- (not A) (not B) (A or B or C)
 C
- Unit propagation = repeated application of rule.

Brian Williams, Fall 10

Unit Propagation Examples

- C1: Not A or B Satisfied
- C2: Not C or A Satisfied
- C3: Not B or C Satisfied
- C4: A Satisfied

Support

C4 \rightarrow A \rightarrow True \rightarrow C1 \rightarrow True \rightarrow B \rightarrow True \rightarrow C3 \rightarrow True \rightarrow C

Brian Williams, Fall 10
Unit Propagation Examples

- C1: Not A or B
- C2: Not C or A
- C3: Not B or C
- C4: A

Unit Propagation

\[C_1 : \neg r \lor q \lor p \]
\[C_2 : \neg p \lor \neg t \]

Procedure: propagate(C)
// C is a clause
if all literals in C are false except L, and L is unassigned
then assign true to L and
record C as a support for L and
for each clause C’ mentioning “not L”,
propagate(C)
end propagate
Unit Propagation

\[C_1: \neg r \lor q \lor p \]
\[C_2: \neg p \lor \neg t \]

Procedure: \texttt{propagate}(C)
\begin{align*}
&\text{if all literals in } C \text{ are false except } L, \text{ and } L \text{ is unassigned} \\
&\text{then assign true to } L \text{ and} \\
&\text{record } C \text{ as a support for } L \text{ and} \\
&\text{for each clause } C' \text{ mentioning “not } L”, \\
&\text{propagate}(C') \\
&\text{end propagate}
\end{align*}
Unit Propagation

Procedure: \(\text{propagate}(C) \)
// \(C \) is a clause

- if all literals in \(C \) are false except \(L \), and \(L \) is unassigned
- then assign true to \(L \) and record \(C \) as a support for \(L \) and
- for each clause \(C' \) mentioning “\(\neg L \)”,
- \(\text{propagate}(C') \)

Unit Propagation

Procedure: \(\text{propagate}(C) \)
// \(C \) is a clause

- if all literals in \(C \) are false except \(L \), and \(L \) is unassigned
- then assign true to \(L \) and record \(C \) as a support for \(L \) and
- for each clause \(C' \) mentioning “\(\neg L \)”,
- \(\text{propagate}(C') \)

Brian Williams, Fall 10
Unit Propagation

Procedure: `propagate(C)` // C is a clause

if all literals in C are false except L, and L is unassigned
then assign true to L and
record C as a support for L and
for each clause C' mentioning “not L”,
 propagate(C')
end propagate

Outline

• Propositional Logic
• Propositional Satisfiability
 • Backtrack Search
 • Unit Propagation
 • DPLL: Unit Propagation + Backtrack Search
• Empirical, Average Case Analysis
• Appendices
Propositional Satisfiability using DPLL
[Davis, Logmann, Loveland, 1962]

Initially:
• Unit propagate.

Repeat:
1. Assign true or false to an unassigned proposition.
2. Unit propagate.
3. Backtrack as soon as a clause is violated.
4. Satisfiable if assignment is complete.

Example:
• C1: Not A or B satisfied
• C2: Not C or A satisfied
• C3: Not B or C satisfied

Brian Williams, Fall 10
How Do We Fold Unit Propagation into Backtracking?

Procedure: BT(Φ, A)

Input: A *cnf* theory Φ,
An assignment A to some propositions in Φ

Output: A decision of whether Φ is satisfiable.

If a clause in Φ is violated, Return false;
Else If all propositions of Φ are assigned in A, Return true;
Else Q = some unassigned proposition in Φ;
Return (BT(Φ, A[Q = True]) or
BT(Φ, A[Q = False]))

Hint: Like MAC and Forward Checking:
- limited inference
- apply inference after assigning each variable.

D(P)LL Procedure
[Davis, Logmann, Loveland, 1961]

Procedure: DPLL(Φ, A)

Input: A *cnf* theory Φ,
An assignment A to propositions in Φ

Output: A decision of whether Φ is satisfiable.

A’ = propagate(Φ);
If a clause in Φ is violated, given A’ Return false;
Else If all propositions of Φ are assigned in A’, Return true;
Else Q = some unassigned proposition in Φ;
Return (DPLL(Φ, A [Q = True]) or
DPLL(Φ, A [Q = False]))
Outline

- Propositional Logic
- Propositional Satisfiability
 - Backtrack Search
 - Unit Propagation
 - DPLL: Unit Propagation + Backtrack Search
- Empirical, Average Case Analysis
- Appendices

Hardness of 3SAT

Courtesy of Bart Selman. Used with permission.
The 4.3 Point

![Graph showing the relationship between the ratio of constraints to variables (Alpha) and computational effort. The graph displays two axes: the x-axis represents the ratio of constraints to variables, while the y-axis represents the computational effort. The graph includes two sets of data points: one for solvable cases (green) and another for impossible cases (orange). The presence of a peak indicates a critical point where computational effort significantly increases as the ratio of constraints to variables increases.]

Courtesy of Bart Selman. Used with permission.

Image by MIT OpenCourseWare.
Intuition

• At low ratios:
 • few clauses (constraints)
 • many assignments
 • easily found

• At high ratios:
 • many clauses
 • inconsistencies easily detected

Courtesy of Bart Selman. Used with permission.
Phase Transitions: 2, 3 4, 5 and 6-SAT

![Graph showing phase transitions for 2, 3, 4, 5, and 6-SAT]

Courtesy of Bart Selman. Used with permission.

Required Appendices

You are responsible for reading and knowing this material:

1. Local Search using Min_Conflict and GSAT
2. Reduction to Clausal Form
Incremental Repair (Min-Conflict Heuristic)

Spike Hubble Telescope Scheduler [Minton et al.]

1. Initialize a candidate solution using “greedy” heuristic – get solution “near” correct one.

2. Repeat until consistent:
 1. Select a variable in a conflict (violated constraint)
 2. Assign it a value that minimizes the number of conflicts (break ties randomly).

Graph Coloring
Initial Domains

GSAT

- C1: Not A or B
- C2: Not C or Not A
- C3: or B or Not C

1. Init: Pick random assignment
2. Check effect of flipping each assignment, by counting violated clauses.
3. Pick assignment with fewest violations,
4. End if consistent, Else goto 2

C1, C2, C3 violated

True False True
A B C

C3 violated C2 violated C1 violated
GSAT

- C1: Not A or B
- C2: Not C or Not A
- C3: or B or Not C

1. **Init:** Pick random assignment
2. **Check effect of flipping each assignment,** counting violated clauses.
3. **Pick assignment with fewest violations,**
4. **End if consistent,** Else goto 2

<table>
<thead>
<tr>
<th>True</th>
<th>False</th>
<th>False</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
</tbody>
</table>

C1 violated

<table>
<thead>
<tr>
<th>False</th>
<th>True</th>
<th>True</th>
</tr>
</thead>
<tbody>
<tr>
<td>Satisfied</td>
<td>Satisfied</td>
<td>C1,C2,C3 violated</td>
</tr>
</tbody>
</table>

Problem: Pure hill climbers get stuck in local minima.

Solution: Add random moves to get out of minima (WalkSAT)
Required Appendices

You are responsible for reading and knowing this material:

1. Local Search using Min_Conflict and GSAT
2. Reduction to Clausal Form

Reduction to Clausal Form: Engine Example

(mode(E1) = ok implies
 (thrust(E1) = on iff flow(V1) = on and flow(V2) = on)) and
(mode(E1) = ok or mode(E1) = unknown) and
not (mode(E1) = ok and mode(E1) = unknown)

not (mode(E1) = ok) or not (thrust(E1) = on) or flow(V1) = on;
not (mode(E1) = ok) or not (thrust(E1) = on) or flow(V2) = on;
not (mode(E1) = ok) or not (flow(V1) = on) or not (flow(V2) = on) or
 thrust(E1) = on;
mode(E1) = ok or mode(E1) = unknown;
not (mode(E1) = ok) or not (mode(E1) = unknown);
Reducing Propositional Formula to Clauses (CNF)

1) Eliminate IFF and Implies:
 • E1 iff E2 => (E1 implies E2) and (E2 implies E1)
 • E1 implies E2 => not E1 or E2

Eliminate IFF:
Engine Example

(mode(E1) = ok implies
 (thrust(E1) = on iff (flow(V1) = on and flow(V2) = on))) and
(thrust(E1) = on implies (flow(V1) = on and flow(V2) = on)) and
(flow(V1) = on and flow(V2) = on) implies thrust(E1) = on)) and
(mode(E1) = ok or mode(E1) = unknown) and
not (mode(E1) = ok and mode(E1) = unknown)

(mode(E1) = ok implies
 (thrust(E1) = on implies (flow(V1) = on and flow(V2) = on)) and
 ((flow(V1) = on and flow(V2) = on) implies thrust(E1) = on)) and
 (mode(E1) = ok or mode(E1) = unknown) and
 not (mode(E1) = ok and mode(E1) = unknown)
Eliminate Implies:
Engine Example

(mode(E1) = ok implies
((thrust(E1) = on implies (flow(V1) = on and flow(V2) = on)) and
((flow(V1) = on and flow(V2) = on) implies thrust(E1) = on))) and
(mode(E1) = ok or mode(E1) = unknown) and
not (mode(E1) = ok and mode(E1) = unknown)

(not (mode(E1) = ok) or
((not (thrust(E1) = on) or (flow(V1) = on and flow(V2) = on)) and
(not (flow(V1) = on and flow(V2) = on)) or thrust(E1) = on)) and
(mode(E1) = ok or mode(E1) = unknown) and
not (mode(E1) = ok and mode(E1) = unknown)

Brian Williams, Fall 10

Reducing Propositional Formula to Clauses (CNF)

2) Move negations in towards propositions using
De Morgan’s Theorem:

• not (E1 and E2) => (not E1) or (not E2)
• not (E1 or E2) => (not E1) and (not E2)
• not (not E1) => E1
Move Negations In:
Engine Example

(not (mode(E1) = ok) or
((not (thrust(E1) = on) or (flow(V1) = on and flow(V2) = on)) and
 (not (flow(V1) = on and flow(V2) = on)) or thrust(E1) = on)) and
(mode(E1) = ok or mode(E1) = unknown) and
not (mode(E1) = ok and mode(E1) = unknown)

(not (mode(E1) = ok) or
((not (thrust(E1) = on) or (flow(V1) = on and flow(V2) = on)) and
 (not (flow(V1) = on) or not (flow(V2) = on)) or thrust(E1) = on)) and
(mode(E1) = ok or mode(E1) = unknown) and
(not (mode(E1) = ok) or not (mode(E1) = unknown)))

Reducing Propositional Formula to Clauses (CNF)

3) Move conjunctions out using distributivity:
 • E1 or (E2 and E3) => (E1 or E2) and (E1 or E3)
Move Conjunctions Out: Engine Example

(not (mode(E1) = ok) or
 (((not (thrust(E1) = on) or (flow(V1) = on and flow(V2) = on)) and
 (not (flow(V1) = on) or not (flow(V2) = on) or thrust(E1) = on))) and
 (mode(E1) = ok or mode(E1) = unknown) and
 (not (mode(E1) = ok) or not (mode(E1) = unknown)))

(not (mode(E1) = ok) or
 (((not (thrust(E1) = on) or flow(V1) = on) and
 (not (thrust(E1) = on) or flow(V2) = on)) and
 (not (flow(V1) = on) or not (flow(V2) = on) or thrust(E1) = on))) and
 (mode(E1) = ok or mode(E1) = unknown) and
 (not (mode(E1) = ok) or not (mode(E1) = unknown))

Move Conjunctions Out: Engine Example

(not (mode(E1) = ok) or
 (((not (thrust(E1) = on) or flow(V1) = on) and
 (not (thrust(E1) = on) or flow(V2) = on)) and
 (not (flow(V1) = on) or not (flow(V2) = on) or thrust(E1) = on))) and
 (mode(E1) = ok or mode(E1) = unknown) and
 (not (mode(E1) = ok) or not (mode(E1) = unknown))

(not (mode(E1) = ok) or not (thrust(E1) = on) or flow(V1) = on) and
(not (mode(E1) = ok) or not (thrust(E1) = on) or flow(V2) = on) and
(not (mode(E1) = ok) or not (flow(V1) = on) or not (flow(V2) = on) or thrust(E1) = on) and
(mode(E1) = ok or mode(E1) = unknown) and
(not (mode(E1) = ok) or not (mode(E1) = unknown))
Reducing Propositional Formula to Clauses (CNF)

4) “Simplify by Equivalence”
 remove double negations
 - \((\neg \neg E_1) \implies E_1\)
 apply commutativity and associativity
 - \((E_1 \text{ or } (E_3 \text{ or } (\neg E_1))) \implies (E_1 \text{ or } (\neg E_1) \text{ or } E_3)\)
 remove duplicate literals
 - \((E_1 \text{ or } E_1) \implies E_1\)
 remove duplicate clauses
 - \((E_1 \text{ or } (\neg E_2)) \text{ and } (E_1 \text{ or } (\neg E_2)) \implies (E_1 \text{ or } (\neg E_2))\)
 reduce by tautology
 - \((E_1 \text{ or } \ldots \text{ or } (\neg E_1)) \implies \text{true}\)
 definition of and/or
 - \(\text{true and } E_1 \implies E_1\)
 - \(\text{false and } E_1 \implies \text{false}\)
 - \((\text{false or } E_1) \implies E_1\)

Brian Williams, Fall 10

Reducing Propositional Formula to Clauses (CNF)

1) Eliminate IFF and Implies
 - \(E_1 \text{ iff } E_2 \implies (E_1 \text{ implies } E_2) \text{ and } (E_2 \text{ implies } E_1)\)
 - \(E_1 \text{ implies } E_2 \implies \neg E_1 \text{ or } E_2\)

2) Move negations in towards propositions using
 De Morgan’s Theorem:
 - \(\neg (E_1 \text{ and } E_2) \implies (\neg E_1) \text{ or } (\neg E_2)\)
 - \(\neg (E_1 \text{ or } E_2) \implies (\neg E_1) \text{ and } (\neg E_2)\)
 - \(\neg (\neg E_1) \implies E_1\)

3) Move conjunctions out using Distributivity
 - \(E_1 \text{ or } (E_2 \text{ and } E_3) \implies (E_1 \text{ or } E_2) \text{ and } (E_1 \text{ or } E_3)\)

4) Simplify by Equivalence

Brian Williams, Fall 10