Assignments

Readings

- Lecture notes
- [AIMA] Ch. 17.1-3.
Searching over policies

- Value iteration converges exponentially fast, but still asymptotically.

- Recall how the best policy is recovered from the current estimate of the value function:

\[\pi_i(s) = \arg \max_a E \left[R(s, a, s') + \gamma V_i(s') \right], \quad \forall s \in S. \]

- In order to figure out the optimal policy, it should not be necessary to compute the optimal value function exactly...

- Since there are only finitely many policies in a finite-state, finite-action MDP, it is reasonable to expect that a search over policies should terminate in a finite number of steps.
Policy evaluation

- Let us assume we have a policy, e.g., \(\pi : S \rightarrow A \), that assigns an action to each state. I.e., action \(\pi(s) \) will be chosen each time the system is at state \(s \).

- Once the actions taken at each state are fixed,
 - the MDP is turned into a Markov chain (with rewards).
 - one can compute the expected utility collected over time using that policy.

- In other words, one can evaluate how well a certain policy does by computing the value function induced by that policy.
Policy evaluation example — naïve method

- Same planning problem as the previous lecture, in a smaller world (4x4).
- Simple policy π: always go right, unless at the goal (or inside obstacles).
- Expected utility (value function) starting from top left corner (cell 2, 2):
 \[V_\pi(2, 2) \approx 0.06 \cdot 8.1 = 0.5 \]
Recalling the MDP properties, one can write the value function at a state as the expected reward collected at the first step + expected discounted value at the next state under the given policy:

$$V_{\pi}(s) = E \left[R(s, \pi(s), s') + \gamma V(s') \right]$$

$$= \sum_{s' \in S} T(s, \pi(s), s') \left[R(s, \pi(s), s') + \gamma V(s') \right], \quad \forall s \in S$$

Note that this is a set of $\text{card}(S)$ linear equations in the $\text{card}(S)$ unknowns $\{V_{\pi}(s), s \in S\}$.

This can be solved efficiently, in $O(\text{card}(S)^3)$
Let us consider the variables $v_{2,2}, v_{3,2}, v_{3,3}$ (the others are trivially 0).

We have:

\[
\begin{align*}
v_{2,2} &= \frac{3}{4} (0 + 0.9 \cdot 0) + \frac{1}{12} (0 + 0.9 v_{3,2}) \\
v_{3,2} &= \frac{3}{4} (1 + 0.9 v_{3,3}) + \frac{1}{12} (0 + 0.9 v_{2,2}) \\
v_{3,3} &= 1 (1 + 0.9 v_{3,3})
\end{align*}
\]

Solving, we get:

\[
\begin{align*}
v_{3,3} &= 10 \\
v_{2,2} &= \frac{3}{40} v_{3,2} = \ldots = 0.5657 \\
v_{3,2} &= 7.5 + \frac{9}{1600} v_{3,2} = \frac{1600}{1591} 7.5 = 7.5424
\end{align*}
\]
Roll-out policies

- Given a baseline policy π_0, with induced value function V_{π_0}, we can always get another policy π_1 that is at least as good (i.e., such that $V_{\pi_1}(s) \geq V_{\pi_0}(s)$, for all $s \in S$).

- Idea: for each state s, choose the action that maximizes the expected total reward that will be collected if the baseline policy is used from the next step onwards, i.e.,

$$
\pi_1(s) = \arg \max_{a \in A} \mathbb{E} \left[R(s, a, s') + \gamma V(s') \right] \\
= \arg \max_{a \in A} \sum_{s' \in S} T(s, a, s') \left[R(s, \pi(s), s') + \gamma V_{\pi_0}(s') \right], \quad \forall s \in S
$$
Roll-out policy example

- Baseline policy:
 - $\pi_0(2, 2) = \rightarrow$,
 - $\pi_0(3, 2) = \rightarrow$,
 - $\pi_0(3, 3) = \cdot$.

- $\pi_1(2, 2) = \arg\max \begin{cases} \rightarrow: 0.566 \\ \downarrow: 3/4 \cdot 0.9 \cdot 7.542 \\ \uparrow: 1/12 \cdot 0.9 \cdot 7.542 \end{cases}$

- $\pi_1(3, 2) = \arg\max \begin{cases} \rightarrow: 7.542 \\ \downarrow: 1/12 \cdot 0.9 \cdot 10 \\ \uparrow: 1/12 \cdot 0.9 \cdot 0.566 \end{cases}$
Policy Iteration

- Idea: given a baseline policy, an improved policy can be computed using roll-out. The improved policy can be further improved by applying roll-out again. Repeat.

- Since there are a finite number of states and a finite number of actions, this will eventually terminate with a policy that cannot be further improved.

- This is in fact an optimal policy.
Policy Iteration

Policy iteration algorithm:

- Pick an arbitrary policy \(\pi \).
- Iterate:
 1. Policy evaluation: solve the linear system
 \[
 V(s) = \sum_{s' \in S} T(s, \pi(s), s') \left[R(s, \pi(s), s') + \gamma V(s') \right], \forall s \in S
 \]
 2. Policy improvement: for each \(s \in S \):
 \[
 \pi(s) \leftarrow \arg \max_a \sum_{s' \in S} T(s, a, s') \left[R(s, a, s') + \gamma V(s') \right]
 \]
 until \(\pi \) is unchanged.
Back to the 10x10 grid:
Back to the 10×10 grid:
Back to the 10x10 grid:
Back to the 10x10 grid:
After 4 iterations:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.45</td>
<td>0.56</td>
<td>0.61</td>
<td>0.84</td>
<td>1.17</td>
<td>0.87</td>
<td>1.11</td>
<td>1.5411</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.61</td>
<td>0.71</td>
<td>0</td>
<td>0</td>
<td>1.54</td>
<td>0</td>
<td>0</td>
<td>2.16</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.78</td>
<td>0.93</td>
<td>0</td>
<td>0</td>
<td>2.16</td>
<td>2.59</td>
<td>3.02</td>
<td>3.03</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.98</td>
<td>1.21</td>
<td>0</td>
<td>2.03</td>
<td>2.74</td>
<td>3.26</td>
<td>3.84</td>
<td>3.91</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1.23</td>
<td>1.58</td>
<td>1.90</td>
<td>2.44</td>
<td>2.95</td>
<td>3.54</td>
<td>4.56</td>
<td>5.03</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1.18</td>
<td>1.50</td>
<td>1.78</td>
<td>2.09</td>
<td>2.28</td>
<td>0</td>
<td>5.38</td>
<td>6.51</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1.02</td>
<td>1.29</td>
<td>1.52</td>
<td>1.76</td>
<td>1.77</td>
<td>0</td>
<td>6.74</td>
<td>8.49</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.76</td>
<td>1.02</td>
<td>1.20</td>
<td>1.37</td>
<td>1.30</td>
<td>0</td>
<td>8.01</td>
<td>10</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

This is the optimal value function, induced by the optimal policy (notice exact convergence in a finite number of steps).
Value vs. Policy Iteration

- Policy iteration is desirable because of its finite-time convergence to the optimal policy.

- However, policy iteration requires solving possibly large linear systems: each iteration takes $O(\text{card}(S)^3)$ time.

- Value iteration requires only $O(\text{card}(S) \cdot \text{card}(A))$ time at each iteration — usually the cardinality of the action space is much smaller than that of the state space.
Some times, solving the linear system for policy evaluation may be too time consuming (e.g., for large state spaces).

It turns out that we can get a good approximation of the value function V by doing the following simplified value iteration (simplified since π is given):

$$V_{i+1}(s) = \sum_{s' \in S} T(s, \pi(s), s') \left[R(s, \pi(s), s') + \gamma V_i(s) \right]$$
Asynchronous Policy Iteration

- In fact, one can even do the following:

- Pick a subset of states $\tilde{S} \subseteq S$

- Apply either Value Iteration, or (modified) Policy Iteration to those states.

- Repeat
Model-free MDPs

- In many cases of interest, the exact details of the MDP (i.e., transition probabilities) are not known.

- **Reinforcement learning:** learn good control policies via the analysis of state/action/rewards sequences collected in simulation and/or experiments.

- Several options, e.g., :
 - **Certainty equivalence:** estimate transition probabilities through data, then apply standard methods.
 Expensive, not on-line
 - **Temporal Difference learning:** Only maintain an estimate of the value function V. For each transition, e.g., $s \overset{a}{\rightarrow} s'$, update the estimate:

 $$V(s) \leftarrow (1 - \alpha_t) V(s) + \alpha_t \left[R(s, a, s') + \gamma V(s') \right],$$

 where $\alpha_t \in (0, 1)$ is a learning parameter. Note: α_t should decay (e.g., as $\alpha_t = 1/t$) as the number of updated goes to infinity.

 Learning depends on the particular policies applied.
Q-learning

- Estimate total collected reward for state-action pairs.
- **Q-factor** $Q(s, a)$: estimate of the total collected reward collected (i) starting at state s, (ii) applying action a at the first step, (iii) acting optimally for all future times.
- **Q-factor update law**, based on an observed transition $s \xrightarrow{a} s'$:

 $$Q(s, a) \leftarrow (1 - \alpha_t)Q(s, a) + \alpha_t \left[R(s, a, s') + \max_{a'} Q(s', a') \right],$$

 Note: α_t must be decaying over time for convergence, e.g., $\alpha_t = 1/t$.

- Q-learning does not depend on a particular policy.
- **Issue**: Exploitation (choose “best” a) vs. exploration (choose a poorly characterized a).
Approximation techniques

- Very often (e.g., when the state space S is a discretization of a continuous state space, e.g., \mathbb{R}^n), the dimensions of the state space make value iteration/policy iteration/Q-learning/etc. unfeasible in practice.
- Choose an approximation architecture ϕ, with m parameters r, e.g.,
 - ϕ: basis functions, r: coefficients
 - ϕ: “feature vector”, r: coefficients
 - ϕ: neural network, r parameters (weights/biases, etc.)
- Write, e.g.,
 \[
 Q(s, a) = \tilde{Q}(s, a, r) = \sum_{k=1}^{m} r_k \phi_k(s, a)
 \]
- Updates to $Q(s, a)$ correspond to updates to the (low-dimensional) parameter vector r: find best r such that
 \[
 Q(\cdot, \cdot) \approx \tilde{Q}(\cdot, \cdot, r).
 \]
16.410 / 16.413 Principles of Autonomy and Decision Making
Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.