Probabilistic Methods for Kinodynamic Path Planning

Based on Past Student Lectures by: Paul Elliott, Aisha Walcott, Nathan Ickes and Stanislav Funiak

Lecturer: Prof. Brian C. Williams
How do we maneuver or manipulate?

courtesy NASA JSC

courtesy NASA Ames
Outline

- Roadmap path planning
- Probabilistic roadmaps
- Planning in the real world
- Planning amidst moving obstacles
- RRT-based planners
- Conclusions
Outline

- Roadmap path planning
 - Probabilistic roadmaps
 - Planning in the real world
 - Planning amidst moving obstacles
 - RRT-based planners
- Conclusions
Path Planning through Obstacles

Start position

Goal position

Brian Williams, Fall 03
1. Create Configuration Space

Assume: Vehicle translates, but no rotation

Idea: Transform to equivalent problem of navigating a point.

Brian Williams, Fall 03
2. Map From Continuous Problem to a Roadmap: Create Visibility Graph
2. Map From Continuous Problem to a Roadmap: Create Visibility Graph

Start position

Goal position
3. Plan Shortest Path
A Visibility Graph is One Kind of Roadmap

What are some other types of roadmaps?

Brian Williams, Fall 03
Roadmaps: Voronoi Diagrams

Lines equidistant from CSpace obstacles

Brian Williams, Fall 03
Roadmaps: Approximate Fixed Cell
Roadmaps: Approximate Fixed Cell

Brian Williams, Fall 03
Roadmaps: Exact Cell Decomposition
Potential Functions

Khatib 1986
Latombe 1991
Koditschek 1998

Attractive Potential for goals
Repulsive Potential for obstacles
Combined Potential Field

Move along force: \(F(x) = \nabla U_{\text{att}}(x) - \nabla U_{\text{rep}}(x) \)

Brian Williams, Fall 03
Exploring Roadmaps

• Shortest path
 – Dijkstra’s algorithm
 – Bellman-Ford algorithm
 – Floyd-Warshall algorithm
 – Johnson’s algorithm

• Informed search
 – Uniform cost search
 – Greedy search
 – A* search
 – Beam search
 – Hill climbing
Robonaut Teamwork: Tele-robotic

- High dimensional state space
- Controllability and dynamics
- Safety and compliance

Brian Williams, Fall 03
Outline

- Roadmap path planning
- Probabilistic roadmaps
- Planning in the real world
- Planning amidst moving obstacles
- RRT-based planners
- Conclusions
Applicability of Lazy Probabilistic Road Maps to Portable Satellite Assistant

By Paul Elliott
Portable Satellite Assistant

Range Finder:
Navigation, obstacle avoidance, localization support

Motion Detector:
Obstacle avoidance and remote sensing

Thrust Port:
Microthrust duct fan locomotion

Microphone:
Primary Crew audio command interface

Speaker:
Secondary Crew output audio interface

courtesy NASA Ames
Zvezda Service Module

Idea: Probabilistic Roadmaps
- Search randomly generated roadmap
- Probabilistically complete
- Trim infeasible edges and nodes lazily
Place Start and Goal
Place Nodes Randomly
Select a Set of Neighbors
A* Search
A* Search
A* Search
Check Feasible Nodes
Check Feasible Nodes
Check Feasible Nodes
A* Search
Check Feasible Edges
A* Search
Lazy PRM Algorithm

- **Build Roadmap**
 - Start and Goal Nodes
 - Uniform Dist Nodes
 - Nearest Neighbors

```
Build Roadmap
  \[ q_{init}, q_{goal} \]
  \[ \text{Shortest Path (A*)} \]
  \[ \text{Remove Colliding node/edge} \]
  \[ \text{Check Nodes} \]
  \[ \text{Check Edges} \]
  \[ \text{No path found} \]
```

Diagram showing the process flow with nodes and edges indicating the steps of the algorithm.
Lazy PRM Algorithm

- **Shortest Path (A*)**
 - Heuristic = distance to the goal
 - Path length = distance between nodes
Lazy PRM Algorithm

- Check Nodes & Edges
 - Search from Start and End for collisions
 - First check Nodes then Edges
Lazy PRM Algorithm

- Remove Node/Edge
 - For Nodes, remove all edges
 - For Edges, just remove the edge

Diagram:

- Build Roadmap
- Remove Colliding node/edge
- Check Nodes
- Check Edges
- Shortest Path (A*)
- Node Enhancement
- No path found

Variables:

- \(q_{\text{init}} \), \(q_{\text{goal}} \)
Lazy PRM Algorithm

- **Node Enhancement**
 - Add $\frac{1}{2}$ uniformly
 - Add $\frac{1}{2}$ clustered around midpoints of removed edges

```
Build Roadmap
  ▼
  Shortest Path (A*)
    ▼
    Remove Colliding node/edge
      ▼
      Collision
        ▼
        Check Nodes
          ▼
          Collision
            ▼
            Check Edges
              ▼
              Node Enhancement
                ▼
                q_{init}, q_{goal}
                  ▼
                  No path found
```
PRMs Fall Short For Dynamical Systems

- Using PRM
 1. Construct roadmap
 2. A* finds path in roadmap
 3. Must derive control inputs from path

- Cannot always find inputs for an arbitrary path
Outline

- Roadmap path planning
- Probabilistic roadmaps
- Planning in the real world
- Planning amidst moving obstacles
- RRT-based planners
- Conclusions
Path Planning in the Real World

Real World Robots

- Have inertia
- Have limited controllability
- Have limited sensors
- Face a dynamic environment
- Face an unreliable environment

Static planners (e.g. PRM) are not sufficient
Two Approaches to Path Planning

Kinematic: only concerned with motion, without regard to the forces that cause it
- **Works well**: when position controlled directly.
- **Works poorly**: for systems with significant inertia.

Kinodynamic: incorporates dynamic constraints
- Plans velocity as well as position
Representing Static State

- Configuration space represents the position and orientation of a robot
- Sufficient for static planners like PRM

Example: Steerable car

Configuration space

\((x, y, \theta)\)
Representing Dynamic State

- State space incorporates robot dynamic state
- Allows expression of dynamic constraints
- Doubles dimensionality

Example: Steerable car

State space

\[X = (x, y, \theta, \dot{x}, \dot{y}, \dot{\theta}) \]

Constraints

- max velocity, min turn
- car dynamics
Incorporating Dynamic Constraints

- For some states, collision is unavoidable
 - Robot actuators can apply limited force

- Path planner should avoid these states
Regions in State Space

- Collision regions: X_{coll}
 - Clearly illegal
- Region of Imminent Collision: X_{ric}
 - Where robot’s actuators cannot prevent a collision
- Free Space: $X_{free} = X - (X_{coll} + X_{ric})$

- Collision-free planning involves finding paths that lie entirely in X_{free}
Constraints on Maneuvering

- Nonholonomic: Fewer controllable degrees of freedom then total degrees of freedom
- Example: steerable car
 - 3 dof \((x, y, \theta)\), but only
 - 1 controllable dof (steering angle)

- Equation of Motion: \(G(s, \dot{s}) = 0 \)
 - Constraint is a function of state and time derivative of state
Outline

- Roadmap path planning
- Probabilistic roadmaps
- Planning in the real world
- Planning amidst moving obstacles
- RRT-based planners
- Conclusions
Problem

- Kinodynamic motion planning amidst moving obstacles with known trajectories
- Example: Asteroid avoidance problem
- Moving Obstacle Planner (MOP)
 - Extension to PRM
MOP Overview

Similar to PRM, except

- Does **not pre-compute** the roadmap
- **Incrementally constructs** the roadmap by extending it from existing nodes
- Roadmap is a **directed tree** rooted at initial **state × time** point and oriented along time axis
Building the Roadmap

1. Randomly choose an existing node

2. Randomly select control input u

3. Randomly select integration time interval $\delta \in [0, \delta_{\text{max}}]$

4. Integrate equations of motion

Integrate *equations of motion* from an existing node with respect to u for some time interval δ
5. If edge is collision-free then
6. Store control input with new edge
7. Add new node to roadmap

Result: Any trajectory along tree satisfies motion constraints and is collision-free!
Solution Trajectory

1. If goal is reached then
2. Proceed backwards from the goal to the start

Goal state and time $(s_{\text{goal}}, t_{\text{goal}})$

Start state and time $(s_{\text{start}}, t_{\text{start}})$
MOP details: Inputs and Outputs

Planning Query:
- Let \((s_{\text{start}}, t_{\text{start}})\) denote the robot’s start point in the state \(\times\) time space, and \((s_{\text{goal}}, t_{\text{goal}})\) denote the goal.
- \(t_{\text{goal}} \in I_{\text{goal}}\), where \(I_{\text{goal}}\) is some time interval in which the goal should be reached.

Solution Trajectory:
- Finite sequence of fixed control inputs applied over a specified duration of time.
 - Avoids moving obstacles by indexing each state with the time when it is attained.
 - Obeys the dynamic constraints.
MOP details: Roadmap Construction

- Objective: obtain new node \((s', t')\)
 - \(s'\) = the new state in the robot’s state space
 - \(t' = t + \delta, \) current time plus the integration time

Each iteration:
1. Select an existing node \((s, t)\) in the roadmap at random
2. Select control input \(u\) at random
3. Select integration time \(\delta\) at random from \([0, \delta_{\text{max}}]\)
MOP details: Roadmap Construction

3. Integrate control inputs over time interval

4. Edge between \((s, t)\) and \((s’, t’)\) is checked for collision with static obstacles and moving obstacles

5. If collision-free, store control input \(u\) with the new edge

6. \((s’, t’)\) is accepted as new node
Modify to Ensure Uniform Distribution of Space:

- **Why?** If existing roadmap nodes were selected uniformly, the planner would pick a node in an already densely sampled region.
- **Avoid oversampling** of any region by dividing the state×time space into bins.
Achieving Uniform Node Distribution

1. Equally divide space
2. Denote each section as a bin; number each bin

<table>
<thead>
<tr>
<th>bin 1</th>
<th>bin 2</th>
<th>bin 3</th>
<th>bin 4</th>
<th>bin 5</th>
<th>bin 6</th>
<th>bin 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>bin 8</td>
<td>bin 9</td>
<td>bin 10</td>
<td>bin 11</td>
<td>bin 12</td>
<td>bin 13</td>
<td>bin 14</td>
</tr>
</tbody>
</table>

*bins store roadmap nodes that lie in their region
Achieving Uniform Node Distribution

3. Create an array of bins

Array

Equal-sized bins

Existing nodes

bin 1 bin 2 bin 3
Achieving Uniform Node Distribution

- Planner randomly picks a bin with at least one node
- At that bin, the planner picks a node at random
Achieving Uniform Node Distribution

Insert new node into its corresponding bin
Demonstration of MOP

• *Point–mass* robot moving in a plane
 • State $s = (x, y, x', y')$

![Diagram of a point-mass robot moving in a plane with moving and static obstacles.](image-url)
Demonstration of MOP
Summary

- MOP algorithm incrementally builds a roadmap in the state×time space
- The roadmap is a directed tree oriented along the time axis
- By including time the planner is able to generate a solution trajectory that
 - avoids moving and static obstacles
 - obeys the dynamic constraints
- Bin technique to ensure that the space is explored somewhat uniformly
Outline

- Roadmap path planning
- Probabilistic roadmaps
- Planning in the real world
- Planning amidst moving obstacles
- RRT-based planners
- Conclusions
Planning with RRTs

- **RRTs**: Rapidly-exploring Random Trees
- Similar to MOP
 - Incrementally builds the roadmap tree
 - Integrates the control inputs to ensure that the kinodynamic constraints are satisfied
- Informed exploration strategy from MOP
- Extends to more advanced planning techniques
How it Works

- Build RRT in state space \((X)\), **starting at** \(s_{\text{start}}\)
- **Stop** when tree gets sufficiently **close to** \(s_{\text{goal}}\)
Building an RRT

- To extend an RRT:
 - Pick a random point a in X
 - Find b, the node of the tree closest to a
 - Find control inputs u to steer the robot from b to a
To extend an RRT (cont.)

- **Apply control inputs** u for time δ, so robot reaches c

- **If no collisions** occur in getting from a to c, add c to RRT and record u with new edge
Executing the Path

Once the **RRT reaches** s_{goal}

- **Backtrack along tree** to identify edges that lead from s_{start} to s_{goal}
- **Drive robot** using control inputs stored along edges in the tree
Principle Advantage

- RRT quickly explores the state space:
 - Nodes most likely to be expanded are those with largest Voronoi regions
Advanced RRT Algorithms

1. Single RRT biased towards the goal

2. Bidirectional planners

3. RRT planning in dynamic environments
Example: Simple RRT Planner

- Problem: ordinary RRT explores X uniformly
 \rightarrow slow convergence
- Solution: bias distribution towards the goal
Goal-biased RRT

BUILD_RRT(\(x_{init}\))
1 \(\mathcal{T}.\text{init}(x_{init});\)
2 \(\text{for } k = 1 \text{ to } K \text{ do} \)
3 \(x_{rand} \leftarrow \text{RANDOM_STATE}();\)
4 \(\text{EXTEND}(\mathcal{T}, x_{rand});\)
5 Return \(\mathcal{T}\)

BIASED_RANDOM_STATE()
1 \(toss \leftarrow \text{COIN_TOSS}()\)
2 \(\text{if } toss = \text{heads} \text{ then} \)
3 \(\text{Return } s_{goal}\)
4 \(\text{else} \)
5 \(\text{Return } \text{RANDOM_STATE}()\)
Goal-biased RRT
The world is full of... local minima

- If too much bias, the planner may get trapped in a local minimum

A different strategy:
- Pick RRT point near s_{goal}
- Based on distance from goal to the nearest v in G
- Gradual bias towards s_{goal}

Rather slow convergence
Bidirectional Planners

- Build two RRTs, from start and goal state

- **Complication**: need to connect two RRTs
 - local planner will not work (dynamic constraints)
 - bias the distribution, so that the trees meet
Bidirectional Planner Algorithm

RRT_BIDIRECTIONAL(x_{init}, x_{goal})
1 T_a.init(x_{init}); T_b.init(x_{goal});
2 for $k = 1$ to K do
3 $x_{rand} \leftarrow$ RANDOM_STATE();
4 if not (EXTEND(T_a, x_{rand}) = Trapped) then
5 if (EXTEND(T_b, x_{new}) = Reached) then
6 Return PATH(T_a, T_b);
7 SWAP(T_a, T_b);
8 Return Failure
Bidirectional Planner Example

\[
\text{RRT _BIDIRECTIONAL}(x_{\text{init}}, x_{\text{goal}}) \\
\rightarrow 1 \quad \mathcal{T}_a.\text{init}(x_{\text{init}}); \mathcal{T}_b.\text{init}(x_{\text{goal}}); \\
2 \quad \text{for } k = 1 \text{ to } K \text{ do} \\
3 \quad \quad x_{\text{rand}} \leftarrow \text{RANDOM _STATE}(); \\
4 \quad \quad \text{if not (EXTEND}(\mathcal{T}_a, x_{\text{rand}}) = \text{Trapped}) \text{ then} \\
5 \quad \quad \quad \text{if (EXTEND}(\mathcal{T}_b, x_{\text{new}}) = \text{Reached}) \text{ then} \\
6 \quad \quad \quad \quad \text{Return PATH}(\mathcal{T}_a, \mathcal{T}_b); \\
7 \quad \quad \quad \text{SWAP}(\mathcal{T}_a, \mathcal{T}_b); \\
8 \quad \text{Return Failure}
\]
Bidirectional Planner Example
Conclusions

- **Path planners** for real-world robots must account for **dynamic constraints**
- **Building** the roadmap tree **incrementally**
 - ensures that the **kinodynamic constraints** are **satisfied**
 - avoids the need to **reconstruct control inputs** from the path
 - allows **extensions** to **moving obstacles** problem
Conclusions

- MOP and RRT planners are similar
- Well-suited for single-query problems
- RRTs benefit from the ability to steer a robot toward a point
 - RRTs explore the state more uniformly
 - RRTs can be biased towards a goal or to grow into another RRT