Towards Visual SLAM in Dynamic Environments

MIT 16.412J Spring 2004
Vikash K. Mansinghka
Key Points

• Visual metric SLAM in environments with motion is an open problem

• SIFT SLAM error handling makes odd choices:
 – Cheats on position estimation (by trusting vision) - see report
 – Sets arbitrary matching thresholds for vision

• These choices impact SLAM performance:
 – Imposes a limit on motion error (odometry vs. actual)
 – Slow-moving objects can arbitrarily foul localization
 – Matching thresholds may not be best (though “good enough”)

• Partial solution: Minimize uncertainty and use optical flow
SIFT Landmark Tracking

• Predict where landmarks should appear (reliability, speed)

• Note: Robot moves in xz plane

• Given $[p, q, \delta]$ and old relative position $[X, Y, Z]$, find expected position $[X', Y', Z']$ by:

\[
X' = (X - p)\cos(\delta) - (Z - q)\sin(\delta)
\]
\[
Y' = Y
\]
\[
Z' = (X - p)\sin(\delta) - (Z - q)\cos(\delta)
\]

• By pinhole camera model ((u_0, v_0) image center coords, I interocular distance, f focal length):

\[
r' = v_0 - f \frac{Y'}{Z'}
\]
\[
c' = u_0 + f \frac{X'}{Z'}
\]
\[
d' = f \frac{I}{Z'}
\]
\[
\sigma' = \sigma \frac{Z}{Z'}
\]
SIFT Landmark Tracking

- \(V \) is camera field of view angle (60 degrees)
- A landmark is expected to be in view if:
 \[
 Z' > 0 \\
 \tan^{-1}\left(\frac{|X'|}{Z'}\right) < \frac{V}{2} \\
 \tan^{-1}\left(\frac{|Y'|}{Z'}\right) < \frac{V}{2}
 \]
- An expected landmark matches an observed landmark if:
 - Obs. center within a 10x10 region around expected
 - Obs. scale within 20% of expected
 - Obs. orientation within 20 degrees of expected
 - Obs. disparity within 20% of expected
Impact of Loose Matching Tolerance

- Mario does not know landmarks on Wario come from same source
- Robot (Mario) confused as long as Wario moves slowly
Possible Solution

- Add landmarks only when sensor error very low (robot stationary)
- Do not accept landmarks from image regions with motion
- Approximate motion either via SIFT matching or other optical flow scheme
- Alternately: Only trust largest set of consistent errors (how?)
Horn-Schunck Optical Flow

- Let $E(x, y, t)$ be image brightness at pixel (x, y) at time t
- Goal: find $u = \frac{dx}{dt}$ and $v = \frac{dy}{dt}$ (horiz, vert flow)
- Assume $\frac{\partial E}{\partial x} \frac{dx}{dt} + \frac{\partial E}{\partial y} \frac{dy}{dt} + \frac{\partial E}{\partial t} = 0$
- Also minimize measures of the departure from smoothness and above assumption
- One set of choices yields coupled PDEs:
 $\nabla^2 u = \lambda(E_x u + E_y v + E_t)E_x$ and $\nabla^2 v = \lambda(E_x u + E_y v + E_t)E_y$
Proof of Concept for Optical Flow

• Uses Horn-Schunck optical flow; could use SIFT matching
• First demo prunes landmarks which move/are missed too much
• Second demo attempts place recognition by ignoring features on moving image regions
Simple Results

• A restrictive optical flow threshold (0.1) reliably prunes features on moving objects
Place Recognition Results

- Matching threshold of 20%
- Lowering the optical flow threshold from 30 to 1 raised performance from 43% to 56% in an image with motion
- Low performance due primarily to naive place recognition approach
Contributions

• Identified limitation in SIFT error handling; probably present in other SLAM systems

• Suggested simple optical flow technique for enabling dynamic visual SLAM

• Suggested other techniques for improving visual SLAM performance (see report)