Semantic Localization

Matthew Deyo, Michael Traub, Anying Li, Nicole Glabinski, David Stingley, Roxana Mata
Overview

1. Motivation for Semantic Localization

2. Particle Filters

3. Semantic Localization Implementation
Motivation

Orienteering Grand Challenge

© British Orienteering. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.
What would you do?

- You’re dropped in the wild
- You have a compass
- You have a map
Orienteering Relocation Tips

Tips from orienteering experts:

- “Relocate: everyone gets disoriented from time to time.”
- “Stop, locate your last known location on the map, think about what you've seen and what direction you were moving, and how far you have gone.”
- “Look around you for any feature large or unique enough to be mapped.”
Orienteering Maps

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.
What do we want in our map?

<table>
<thead>
<tr>
<th></th>
<th>Robot</th>
<th>Human</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encodes</td>
<td>distances, surfaces</td>
<td>rooms, objects, relationships</td>
</tr>
<tr>
<td>Memory</td>
<td>dense</td>
<td>sparse</td>
</tr>
<tr>
<td>Useful for</td>
<td>motion planning</td>
<td>activity planning</td>
</tr>
</tbody>
</table>

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.
Semantic Information

“Signs and symbols that contain meaningful concepts for humans”
Semantic Information: Why is it important?

Human-robot interaction
Function-driven navigation and planning
Performance and memory optimization
Cheaper hardware
Semantic Localization

The problem of localizing based on semantic information

For the Grand Challenge, we have a map with labeled objects and their coordinates

How can we localize based on what objects we see?
Overview

1. Motivation for Semantic Localization
2. Particle Filters
3. Semantic Localization Implementation
Localization

Simple question: Where am I?

Not so simple answer

The answer depends on the map used
Metric Localization

If you want quantitative pose description:

You need metric map for localization

X, Y, Z coordinates in space

Angles for orientation
Metric Localization

Quantitative pose descriptions
Review of Localization

- Localization problem statement
 Suppose that the control u_t is applied to the robot and, after moving, the robot obtains a random observation z_{t+1}. Given a prior belief over x_t and the map Y, what is the posterior belief of x_{t+1} after taking z_{t+1} and u_t into account?

- When we translate the localization question into probabilistic terms, we aim to find the distribution

$$p(x_{t+1} | x_t, z_{t+1}, u_t, Y)$$

- position at time $t+1$
- position at time t
- observation at time $t+1$
- command variable at time t
- map
Review of Localization

- The Bayesian expansion of this posterior decomposes into

\[
p(z_{t+1} | x_{t+1}) \ p(x_{t+1} | x_t, u_t) \ p(x)
\]

- Observation noise model Actuation model Belief representation

- Our representation of the map limits what models we can use:
 - Topological map: actuation model to be transition probabilities
 - Laser scan observations: noise model over \(\mathbb{R}^n \)
 - Object detection observations: noise model over sets, or boolean variables

- Efficient semantic localization requires designing observation and actuation
Particle Filters

- Representing our posterior over poses can be difficult

\[p(z_{t+1} \mid x_{t+1}) \quad p(x_{t+1} \mid x_t, u_t) \quad p(x) \]

- Kalman filter $\rightarrow p(x)$ is a Gaussian

- Particle filter $\rightarrow p(x)$ is approximated by a set of points
Localization demo
Particle Filter

Sequential Importance Sampling Technique

Algorithm Steps:
0. Sample (using Initial Belief)
1. Update Weights
2. Resample
3. Propagate
Particle Filter - Example

Focus on problem with only one dimension

Aircraft
- Constant altitude
- Unknown x location
- Noisy forward velocity

Sensor
- Measures distance to ground below
- Noisy measurements

Map
- Known mapping of x location to ground altitude

Goal: Determining unknown state - our location
Particle Filter - Example

- Constant altitude
- Unknown x location
- Noisy forward velocity
Particle Filter

Algorithm Steps:

0. **Sample (using Initial Belief)**
 - If completely unknown initial state -> N samples from uniform distribution

1. Update Weights

2. Resample

3. Propagate
Initial Sampling with Unknown State
Particle Filter

Algorithm Steps:
0. Sample (using Initial Belief)
 If completely unknown initial state -> N samples from uniform distribution
1. **Update Weights**
 Compare observations to expectations of each particle
2. Resample
3. Propagate
Measured value from our noisy sensor
Expected height values of each particle
Likelihood that particle explains measurement
Particle weights based on likelihood
Particle Filter

Algorithm Steps:

0. Sample (using Initial Belief)
 - If completely unknown initial state -> N samples from uniform distribution

1. Update Weights
 - Compare observations to expectations of each particle

2. Resample
 - Create N new samples based on weight distribution calculated

3. Propagate
Resample from measurement distribution
Resample from measurement distribution
Particle Filter

Algorithm Steps:
0. Sample (using Initial Belief)
 If completely unknown initial state -> N samples from uniform distribution
1. Update Weights
 Compare observations to expectations of each particle
2. Resample
 Create N new samples based on weight distribution calculated
3. Propagate
 Use dynamics model or inputs to propagate particles
 Take into account uncertainty with new weight calculations
Dynamics Model

Delta t between sensor measurements

Need to propagate particles in time
Dynamics Model

Delta t between sensor measurements

Need to propagate particles in time

\[P(v) \quad \text{Forward velocity} \]
Dynamics Model

New weights based on probability of particle transition

How likely was it for the plane to move that far in delta t?
Particle Filter

Algorithm Steps:

0. Sample (using Initial Belief)
 - If completely unknown initial state -> N samples from uniform distribution

1. Update Weights
 - Compare observations to expectations of each particle

2. Resample
 - Create N new samples based on weight distribution calculated

3. Propagate
 - Use dynamics model or inputs to propagate particles
 - Take into account uncertainty with new weight calculations

Repeat Steps 1 - 3
Keep filtering

Using new measurements and propagating through time

Time Step 2
Keep filtering
Using new measurements and propagating through time
Time Step 3
Keep filtering

Using new measurements and propagating through time

Time Step 4
Keep filtering

Using new measurements and propagating through time

Time Step 5
Keep filtering

Using new measurements and propagating through time

Time Step 6
Keep filtering

Using new measurements and propagating through time

Time Step 7
Keep filtering

Using new measurements and propagating through time

Time Step 8
Localization demo
Overview

1. Motivation for Semantic Localization
2. Particle Filters
3. Semantic Localization Implementation
Implementation

\[p(z_{t+1}|x_{t+1}) \ p(x_{t+1}|x_t, u_t) \ p(x) \]

- Observation noise model
- Actuation model
- Belief representation

Continuously Solve for most probable x

Thats our location
Psuedo Code

While the robot is moving

Make observations

Generate a probable location

Update that location based on actuation

Simulate the observations at that location

Compare expected and actual

Update our location estimates based on comparison
Observation model selection

We need to define z (our observation)

A_L labeled Laser Scan

A_S scene with Objects at Locations

A_S set of objects
Field-of-view with laser scanner

Check each line segment for intersection at each θ. What counts as a detection?
Object-Point Assumption
Field-of-view with point objects

Check each point for intersection with FOV

Legend

- mailbox
- tree
- house
Field-of-view with polygon objects

Legend
- mailbox
- tree
- house
New observation type means new error types

Depending on what we characterize the observation as, there are different opportunities to get it wrong

<table>
<thead>
<tr>
<th>Observation</th>
<th>Potential Errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance & Bearing</td>
<td>Noise, Sensor Limitations</td>
</tr>
<tr>
<td>Object Class</td>
<td>Classification Error</td>
</tr>
<tr>
<td>Sets of Objects</td>
<td>Equality under Permutations</td>
</tr>
</tbody>
</table>
\[P(z_{t+1} | x_{t+1}) \quad \Rightarrow \quad P(Z | Y(x), x) \]

\[Z = \text{Set of Observed Objects} \]

\[\{ \text{House, Mailbox} \} \]

\[Y(x) = \text{Set of Expected Objects for a given position} \]

\[X = \text{Position} \]
Example

Trees & Mailboxes
\[Z = \{\text{Tree, Tree, Mailbox}\} \]
Did we classify our observations correctly?
Did we observe everything in our FoV?
Did we interpret nothing as something?
Did we interpret two things as one thing?

Key Assumption 1: Each observation corresponds to exactly 1 object
Did we classify correctly?

Assume: We see everything in our FoV
Assume: We never see something that doesn’t exist

Solve

\[P(Z \mid Y(x), x) \]
$Y = ?$
Did we classify correctly?

Assume: We see everything in our FoV
Assume: We never see something that doesn’t exist

\[Z = \{ \text{ } \} \quad Y = \{ \quad \} \]

\[Pi = \{ Z \Rightarrow Y \} \]
Did we classify correctly?

Assume: We see everything in our FoV
Assume: We never see something that doesn’t exist

This can keep expanding in relevant terms depending on the structure that detects objects

\[P(z_i | y_i, x) = P(c | y^{\text{class}}) \cdot P(s | c, y^{\text{class}}) \cdot P(b | y, x) \]

How often do we miss classify
If classifications have a score, is that score statistically likely
If we know the bearing we are viewing the object, does that effect classification?
Did we classify correctly?

Assume: We see everything in our FoV
Assume: We never see something that doesn’t exist

\[
P(Z | Y(x), x) = \sum_{i=0}^{\pi} \prod_{|Y|} P(z_{i,pi} | y_i, x)
\]
Did we see everything?

Assume: We see everything in our FoV
Assume: We never see something that doesn’t exist

\[Z = \{ \text{blue block} \text{ green bush} \text{ green bush} \} \quad \text{Y} = \{ \text{blue block} \text{ blue block} \text{ green bush} \text{ green bush} \} \]

\[\{ \text{blue block} \text{ blue block} \rightarrow \text{red circle} \text{ blue block} \text{ green bush} \text{ green bush} \} \]
Did we see everything?

Assume: We see everything in our FoV

Assume: We never see something that doesn’t exist

What if we see nothing

\[P(\emptyset / Y(x), x) \]
Did we see everything?

Assume: We see everything in our FoV
Assume: We never see something that doesn’t exist

\[
P(\emptyset | Y(x), x) = \prod_{i=0}^{\|Y(x)\|} (1 - P(y_i | x))
\]

Key Assumption 2: An object is observed with some probability \(P(y_i | x) \), and not with probability \(1 - P(y_i | x) \)

Key Assumption 3: For a given position \(x \) and map, any two object detections are independent
$Y = \, ?$
Did we see nothing as something?

Assume: We see everything in our FoV
Assume: We never see something that doesn’t exist
Did we see nothing as something?

Assume: We see everything in our FoV
Assume: We never see something that doesn’t exist

What if there is nothing

$$P(Z / \emptyset, x)$$
Did we see nothing as something?

Assume: We see everything in our FoV
Assume: We never see something that doesn’t exist

\[P(Z | \emptyset, x) = e^\lambda \prod_{z \in Z} (\lambda \times K(z)) \]

Key Assumption 4: Noise is poisson distributed in time according to \(\lambda \) and spatially according to \(K(z) \)
Did we see nothing as something?

Assume: We see everything in our FoV
Assume: We never see something that doesn’t exist

So what is $K(z)$?

These correspond to the categories for classifying

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>×</td>
</tr>
<tr>
<td>C</td>
<td>S</td>
</tr>
</tbody>
</table>

Possible Classifications Possible Scores of Classifications Possible Bearings
Putting it all together

Solve

\[P(Z \mid Y(x), x) \]

\[Z = \{ \text{blue square}, \text{green squares} \} \]

\[Y = \{ \text{blue square} \rightarrow \text{green squares} \rightarrow \text{green clouds} \rightarrow \text{green squares} \rightarrow \text{blue square} \} \]
Putting it all together

Solve

\[P(Z \mid Y(x), x) \]

Let

\[| Z | = | Y | - n + o \]

Where \(n \) is missed detections and \(o \) is false detections
Putting it all together

Solve

\[P(Z / Y(x), x) \]

\[P(Z / Y(x), x) = \sum_{i=0}^{\pi} \prod_{|Y|} P(z_{i,p_i} / y_i, x) \times P(y_i / x) \]

\[\times \prod_{n} (1 - P(y_i / x)) \times e^\lambda \prod_{o} (\lambda \times K(z_{p_i})) \]

Pi now maps both actual and false detections
Semantic Localization Video
Why?

Humans can’t walk into a room and reproduce an exact map, but we can store the most important aspects of the room and reason about what they’re used for.

Robots can store a pixel-perfect map of a room, but have no intuitive understanding.

This means we’re better at actually doing tasks with the environment.

How can we make robots localize and think more like humans?
Conclusion

1. Motivation for Semantic Localization
2. Particle Filters
3. Semantic Localization Implementation
References

http://www.us.orienteering.org/orienteers/training/getting-started

Various YouTube videos embedded in slides
Appendix: Our Semantic Map Definition

- We will use a labeled object map \(\mathcal{M} \) which is a set of labeled \(N \) objects \(< P_i, c_i > \) for \(i = 1 \ldots N \)
- \(P_i \) is an ordered list of vertices \(<x, y> \) of the polygon boundary
- \(c_i \) is the class of the object, e.g. tree
- Our robot pose \(x_t \) will be a position and orientation \(<x, y, \theta> \)
- The actuation model can be any continuous dynamical probability model
- Must define the observation noise model