
Luca Carlone

Lecture 15: RANSAC and 3D-3D correspondences
Today

• Recap on 2-view

• RANSAC

• 3D-3D correspondences

The essential matrix encodes relative pose (up to scale) between C_1 and C_2.
2-view Geometry

Last week’s assumptions:
- no wrong correspondences (outliers)
- 3D point is not moving
- camera calibration is known
Estimating Poses from Correspondences

Given N calibrated pixel correspondences:

$$(\tilde{y}_{1,k}, \tilde{y}_{2,k}) \text{ for } k = 1, \ldots, N$$

1. leverage the epipolar constraints to estimate the essential matrix E

 \[
 \tilde{y}_{2,k}^T E \tilde{y}_{1,k} = 0
 \]

 For 8 points: $A e = 0$
 N>8 points: $\arg \min_{\|e\|_1} \|A e\|^2$

2. Retrieve the rotation and translation (up to scale) from the E

 \[
 E = [t] \times R
 \]
2-view Geometry

In practice:
- Many wrong correspondences (outliers)
- Some 3D points might be moving
RANSAC

Problem: estimate model P from N data points, possibly corrupted with outliers.

Assume: we have an algorithm to estimate P from n data points ($n << N$)

Basic idea:
1. sample n points
2. compute an estimate P' of P
3. count how many other points agree with P'
4. repeat until you get a P' that agrees with many points
RANSAC

Random Sample Consensus

Problem: estimate model P from N data points, possibly corrupted with outliers.

Assume: we have an algorithm to estimate P from n data points ($n << N$)

Basic idea:
1. sample n points
2. compute an estimate P' of P
RANSAC

RANdom SAmple Consensus

Problem: estimate model P from N data points, possibly corrupted with outliers.

Assume: we have an algorithm to estimate P from n data points ($n \ll N$)

Basic idea:
1. sample n points
2. compute an estimate P' of P
RANSAC

RANdom **SA**mple **C**onsensus

Problem: estimate model P from N data points, possibly corrupted with outliers.

Assume: we have an algorithm to estimate P from n data points $(n << N)$

Basic idea:
1. sample n points
2. compute an estimate P' of P
RANSAC

Problem: estimate model P from N data points, possibly corrupted with outliers.

Assume: we have an algorithm to estimate P from n data points ($n << N$)

Basic idea:
1. sample n points
2. compute an estimate P' of P
3. count how many other points agree with P'
4. repeat until you get a P' that agrees with many points
RANSAC

RANdom SAmple Consensus

Problem: estimate model P from N data points, possibly corrupted with outliers.

Assume: we have an algorithm to estimate P from n data points ($n << N$)

Basic idea:
1. sample n points
2. compute an estimate P' of P
RANSAC

Random Sample Consensus

Problem: estimate model P from N data points, possibly corrupted with outliers.

Assume: we have an algorithm to estimate P from n data points ($n << N$)

Basic idea:
1. sample n points
2. compute an estimate P' of P
RANSAC

Random Sample Consensus

Problem: estimate model P from N data points, possibly corrupted with outliers.

Assume: we have an algorithm to estimate P from n data points ($n << N$)

Basic idea:
1. sample n points
2. compute an estimate P' of P
Example: Linear Regression

Fit a line through N 2D points, possibly corrupted with outliers.

Note: we have an algorithm to estimate a line from n=2 points

RANSAC:
1. sample 2 points
2. compute a line estimate P' of P
3. count how many points are within a **tolerance** from P'
4. repeat until you get a P' that agrees with many points
Example: Linear Regression

Fit a line through N 2D points, possibly corrupted with outliers.

Note: we have an algorithm to estimate a line from n=2 points

RANSAC:
1. sample 2 points
2. compute a line estimate P' of P
3. count how many points are within a **tolerance** from P'
4. repeat until you get a P' that agrees with many points
Example: Linear Regression

Fit a line through N 2D points, possibly corrupted with outliers.

Note: we have an algorithm to estimate a line from n=2 points.

RANSAC:
1. sample 2 points
2. compute a line estimate P' of P
3. count how many points are within a **tolerance** from P'
4. repeat until you get a P' that agrees with many points.
Example: Linear Regression

Fit a line through N 2D points, possibly corrupted with outliers.

Note: we have an algorithm to estimate a line from n=2 points

RANSAC:
1. sample 2 points
2. compute a line estimate P' of P
3. count how many points are within a **tolerance** from P'
4. repeat until you get a P' that agrees with many points
Example: Linear Regression

Fit a line through N 2D points, possibly corrupted with outliers.

Note: we have an algorithm to estimate a line from n=2 points

RANSAC:
1. sample 2 points
2. compute a line estimate P' of P
3. count how many points are within a **tolerance** from P'
4. repeat until you get a P' that agrees with many points
Example: Linear Regression

Fit a line through N 2D points, possibly corrupted with outliers.

Note: we have an algorithm to estimate a line from n=2 points

RANSAC:

1. sample 2 points
2. compute a line estimate P' of P
3. count how many points are within a tolerance from P'
4. repeat until you get a P' that agrees with many points
Example: Linear Regression

Fit a line through N 2D points, possibly corrupted with outliers.

Note: we have an algorithm to estimate a line from n=2 points

RANSAC:
1. sample 2 points
2. compute a line estimate P' of P
3. count how many points are within a **tolerance** from P'
4. repeat until you get a P' that agrees with many points
Example: Linear Regression

Fit a line through N 2D points, possibly corrupted with outliers.

Note: we have an algorithm to estimate a line from n=2 points

RANSAC:
1. sample 2 points
2. compute a line estimate P' of P
3. count how many points are within a **tolerance** from P'
4. repeat until you get a P' that agrees with many points
RANSAC: Parameter Tuning

1. **Error Tolerance** ϵ: depends on the noise

2. **Acceptable consensus set:**
 - from the paper: $n+5$
 - rule of thumb: >50% of points

3. **Maximum number of iterations**
Example: RANSAC for Essential Matrix estimation

RANSAC:

1. sample n point correspondences
2. compute an estimate E' of the essential matrix E
3. count how many points are within a **tolerance** from E'
4. repeat until you get a E' that agrees with many points
Example: RANSAC for Essential Matrix estimation

RANSAC
- essentially selects the set of inliers
- provides **geometric verification** for the correspondences
Beyond Motion Estimation

The tools we discussed (feature matching, essential matrix estimation, RANSAC) can be used also for **object detection** and **localization**
3D-3D Point Correspondences

Structured Light Cameras

RGB-D cameras can measure depth (D) and image (RBG)

How can we use the depth information to estimate the relative pose between two RGB-D cameras observing the same scene?
3D-3D Point Correspondences

1. We can use camera images to establish 2D-2D correspondences:
\[(\tilde{y}_{1,k}, \tilde{y}_{2,k}) \text{ for } k = 1, \ldots, N\]

2. For each camera we can compute the set of 3D points corresponding to pixels
\[(p_{1,k}, p_{2,k}) \text{ for } k = 1, \ldots, N\]
How to estimate the relative pose between the cameras from 3D-3D correspondences $(p_{1,k}, p_{2,k})$ with $k = 1, \ldots, N$?
Few More Comments:

3 points are sufficient to compute the relative pose from 3D-3D correspondences.

We can use the solver seen today as a 3-point minimal solver within a **RANSAC** method.

Also useful for 3D objects localization:

Other names: vector registration, point cloud alignment, ..
Backup
Other Matrices in 2-view Geometry

Homography matrix H

$$\lambda_2 \mathbf{x}_2 = H \lambda_1 \mathbf{x}_1$$

Fundamental matrix F

$$F = K_2^{-\top} \begin{bmatrix} t \end{bmatrix} \times R \ K_1^{-1}$$

Section 5.3

Chapter 6
• A matrix is an essential matrix if and only if it has singular values \(\{\sigma, \sigma, 0\} \)

• The space of the essential matrices is called the **Essential space** \(S_E \) (i.e., the space of \(3 \times 3 \) matrices that can be written as \([t]_\times R\) for some \(R \in SO(3) \) and \(t \in \mathbb{R}^3 \)). The projection of a matrix \(M \) onto the Essential space can be computed as prescribed in [1, Thm 5.9]:

\[
\arg\min_{E \in S_E} \|E - M\|^2_F = U \begin{bmatrix} \frac{\lambda_1 + \lambda_2}{2} & 0 & 0 \\ 0 & \frac{\lambda_1 + \lambda_2}{2} & 0 \\ 0 & 0 & 0 \end{bmatrix} V^T
\]

where \(M = U \text{diag} (\lambda_1, \lambda_2, \lambda_3) V^T \) is a singular value decomposition of \(M \).