Unconstrained Optimization and Least Squares

Kasra Khosoussi

MIT 16.485: VNAV
Visual Navigation for Autonomous Vehicles
Review/Motivation: Point Estimation

find the “best” estimate of x given noisy measurements z

1. Maximum likelihood (ML) estimate

$$\hat{x}_{\text{MLE}} \in \arg \max_x p(z|x)$$

2. Maximum-a-posteriori (MAP) estimate

$$\hat{x}_{\text{MAP}} \in \arg \max_x p(x|z) = \arg \max_x p(z|x)p(x)$$

- Under additive Gaussian noise and Gaussian priors \rightarrow least squares
Our Plan

Today’s Lecture:

Unconstrained Optimization and Least Squares

Next Lectures:

Introduction to Optimization on Manifolds and Least Squares on Matrix Lie Groups
Basic Terminology

- Objective function $f : \mathbb{R}^n \rightarrow \mathbb{R}$ and decision variable $x \in \mathbb{R}^n$

 $$\min_{x \in \mathbb{R}^n} f(x)$$

- x^* is a global minimizer and $f(x^*)$ is a global minimum iff $f(x^*) \leq f(x)$ for all $x \in \mathbb{R}^n$

- x^* is a local minimizer and $f(x^*)$ is a local minimum iff $f(x^*) \leq f(x)$ for all $x \in B(x^*,r)$ with positive radius r
Example

\[
\cos(3\pi x)/x
\]
Mixed blessing

- Many problems can be formulated as optimization problems
- Sometimes hard problems → easy-looking optimization problems
- Deciding global (even local) optimality is NP-hard in general
Example 1. Fermat’s Last Theorem. Some of the most difficult unsolved problems in mathematics can be posed as problems of finding a global minimum in a smooth nonconvex NLP. Consider Fermat’s last theorem, unresolved since the year 1637. It states that there exists no positive integer solution \((x, y, z)\) to the equation
\[
x^n + y^n = z^n
\]
when \(n\) is an integer \(\geq 3\) (here, \(x, y, z \in \mathbb{R}^1\)). Even though this conjecture has been shown to be true for several individual values of \(n\), in general, it remains open. Obviously, Fermat’s last theorem is not true iff the global minimum objective value in the following NLP is 0 and attained where \(\alpha\) is a positive penalty parameter.

\[
\begin{align*}
\text{minimize} & \quad (x^n + y^n - z^n)^2 \\
& + \alpha ((1 - \cos(2\pi x))^2 + (1 - \cos(2\pi y))^2 + (1 - \cos(2\pi z))^2 \\
& + (1 - \cos(2\pi n))^2)
\end{align*}
\]
subject to \(x, y, z \geq 1, \, n \geq 3\).

Murty and Kabadi (1987)
Structure
Structures: Smoothness

\[f : \mathbb{R}^n \to \mathbb{R} \]

\[\nabla f(x) \triangleq \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{bmatrix} \]

\[\text{Hessian} \in \text{Sym}(n) \]

\[H(x) \triangleq \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{bmatrix} \]

\[f \text{ is (sufficiently) smooth and analytic} \implies \text{Taylor expansion} \]

\[f(x + d) = f(x) + \nabla f(x)^\top d + \frac{1}{2} d^\top H(x) d + o(\|d\|^2) \]
Second-order Taylor approximation

- Local quadratic approximation

\[
f(x_0 + d) \approx \hat{f}_{x_0}(d)
\]

\[
\triangleq f(x_0) + \nabla f(x_0)^\top d + \frac{1}{2} d^\top H(x_0) d
\]

- Another interpretation after change of variables \(x \triangleq x_0 + d \)

\[
f(x) \approx \hat{f}(x)
\]

\[
\triangleq f(x_0) + \nabla f(x_0)^\top (x - x_0) + \frac{1}{2} (x - x_0)^\top H(x_0) (x - x_0)
\]
Recognizing Local Minima

- First-order **necessary** condition for \(f \in C^1(\mathbb{R}^n) \)

\[
\nabla f(x) = 0
\]

- Second-order **necessary** condition for \(f \in C^2(\mathbb{R}^n) \)

\[
\nabla f(x) = 0 \quad \text{and} \quad H(x) \succeq 0
\]

- Second-order **sufficient** condition for \(f \in C^2(\mathbb{R}^n) \)

\[
\nabla f(x) = 0 \quad \text{and} \quad H(x) \succ 0
\]
Structure: Convexity

\(f : \mathbb{R}^n \rightarrow \mathbb{R} \) (\(\text{dom} f = \mathbb{R}^n \)) is convex iff:

1. For all \(x_1, x_2 \in \mathbb{R}^n \) and all \(\theta \in [0,1] \):

\[
f(\theta x_1 + (1 - \theta) x_2) \leq \theta f(x_1) + (1 - \theta) f(x_2)
\]
Structure: Convexity

$f : \mathbb{R}^n \to \mathbb{R} \ (\text{dom} \ f = \mathbb{R}^n)$ is convex iff:

1. For all $x_1, x_2 \in \mathbb{R}^n$ and all $\theta \in [0,1]$:

 $$f(\theta x_1 + (1 - \theta) x_2) \leq \theta f(x_1) + (1 - \theta) f(x_2)$$

2. First-order condition (differentiable f): For all $x, y \in \mathbb{R}^n$:

 $$f(y) \geq f(x) + \nabla f(x)^\top (y - x)$$

 What happens when $\nabla f(x) = 0$?

3. Second-order condition (twice differentiable f): For all $x \in \mathbb{R}^n$:

 $$\mathbf{H}(x) \succeq 0$$
Problem 1: Linear Least-Squares

\[f(x) = \frac{1}{2} \|Ax - b\|^2 \]

- **A** ∈ ℝ^{m×n} and **b** ∈ ℝ^m
- **Gradient**
 \[\nabla f(x) = A^\top (Ax - b) \]
- **Hessian**
 \[H(x) = A^\top A \]
- **Claim:** \(f \) is convex (why?)
- **Claim:** \(\nabla f(x) = 0 \) is necessary and sufficient for global optimality (why?)
- **Claim:** unique minimizer iff \(\text{rank}(A) = n \) (why?)
- i.e., **A** is a tall matrix \((m \geq n) \) with full column rank
- Just solve the normal equations:
 \[(A^\top A)x = A^\top b \]
Problem 2: Nonlinear Least Squares (NLS)

\[f(x) = \frac{1}{2} \| r(x) \|^2 \quad r : \mathbb{R}^n \rightarrow \mathbb{R}^m \quad \text{where } m \geq n \]

- \(r \) is smooth, but not necessarily affine anymore
- \(\| r(x) \|^2 = \sum_{i=1}^{m} r_i^2(x) \) where \(r_i : \mathbb{R}^n \rightarrow \mathbb{R} \)
- First-order Taylor:
 \[r_i(x) \approx r_i(x_0) + \nabla r_i(x_0)^\top (x - x_0) \]
- Stack \(r_i \)'s:
 \[r(x) \approx r(x_0) + J(x_0)(x - x_0) \]
 Jacobian
- Same story, different narrative (change of variable):
 \[r(x_0 + d) \approx r(x_0) + J(x_0)d \]
Jacobian

\[J(x) \triangleq \frac{\partial \mathbf{r}(x)}{\partial \mathbf{x}} = \begin{bmatrix}
\frac{\partial r_1}{\partial x_1} & \frac{\partial r_1}{\partial x_2} & \cdots & \frac{\partial r_1}{\partial x_n} \\
\frac{\partial r_2}{\partial x_1} & \frac{\partial r_2}{\partial x_2} & \cdots & \frac{\partial r_2}{\partial x_n} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial r_m}{\partial x_1} & \frac{\partial r_m}{\partial x_2} & \cdots & \frac{\partial r_m}{\partial x_n}
\end{bmatrix} \in \mathbb{R}^{m \times n} \]
Gauss-Newton

1. start from an initial guess x^0

for $k = 0, 1, \cdots$ and until “convergence”:

2. linearize the residual at the current guess x^k

$$r(x^k + d) \approx r(x^k) + J(x^k)d$$

3. solve the resulting linear least squares to find the step d

$$\text{minimize } \|r(x^k) + J(x^k)d\|^2$$

$$\begin{align*}
(J_k^T J_k) d &= -J_k^T r(x^k) \\
J_k^T J_k d &= -J_k^T r(x^k)
\end{align*}$$

4. $x^{k+1} = x^k + d$
Newton’s Method

- Common Idea in Optimization: locally approximate the objective function around x^k by a simpler (often quadratic) model function

- “Optimal” Choice → Taylor (here $g_k \triangleq \nabla f(x^k)$ and $H_k \triangleq \nabla^2 f(x^k)$)

$$f(x^k + d) \approx m_k(d) \triangleq f(x^k) + g_k^\top d + \frac{1}{2} d^\top H_k d$$

- $m_k(d)$ gives the local quadratic approximation

- Choose a d that is a stationary point (hopefully, minimizer) for $m_k(d)$:

$$\nabla m_k(d) = 0 \Rightarrow H_k d + g_k = 0$$

- Well-defined (i.e., actually moves towards a local minimum) if $H_k > 0 \Rightarrow d = -H_k^{-1}g_k$ and $x^{k+1} = x^k + d$

× In general, has no preference for local minima over other types of stationary points (local maxima or saddle points)

✓ Very fast (“quadratic”) convergence near stationary points
Newton vs. Gauss-Newton

- Recall Nonlinear Least Squares (NLS) \(f_{\text{NLS}}(x) = \frac{1}{2} \| r(x) \|^2 \)
- Verify that the gradient and Hessian of \(f_{\text{NLS}} \) are given by:

\[
\nabla f_{\text{NLS}}(x^k) =: g_k = J_k^\top r(x^k)
\]

\[
\nabla^2 f_{\text{NLS}}(x^k) =: H_k = J_k^\top J_k + \sum_{i=1}^m r_i(x^k) \nabla^2 r_i(x^k) + S
\]

- Thus (pure) Newton step for NLS will be the solution of

\[
(J_k^\top J_k + S)d = -J_k^\top r(x^k)
\]

- Now compare this to Gauss-Newton step:

\[
(J_k^\top J_k) d = -J_k^\top r(x^k)
\]
Gauss-Newton (in NLS) approximates the Hessian matrix in Newton’s method – less expensive than computing the Hessian

Gauss-Newton step will be “close” to Newton step (e.g., fast convergence close to a solution) if S is “small”
- e.g., when r is “close” to an affine function
- and/or when the residuals are “close” to zero at a local solution

$J_k^T J_k$ in Gauss-Newton is a PSD approximation of Hessian in NLS — S can make Hessian non-PSD – (Thanks, Guass!)
Globalization Strategies

- Pure Newton’s or Gauss-Newton iterations may fail to converge at all even to stationary points depending on the initial guess!
- Partly due to the fact that our model functions (and the linearization of residual in Gauss-Newton) are valid approximations of the original function close to x^k, but these algorithms in pure form disregard this.
- d can be “too large” — we may end up increasing the objective!

⇒ Need safeguards (“globalization strategies”) to converge (hopefully, to a local minimum) from any initial guess
- Note that “globalization” has nothing to do with “global” optimality here (that’d be way too ambitious for generic non-convex objectives)
- Two approaches: (i) Line Search and (ii) Trust-Region Methods
Globalization Strategies: Line Search

- **Idea:** $x^{k+1} = x^k + \alpha d$ where α is the step size
- **Plan:** First find a “good” direction, then choose a “good” step size

“Good” Direction

d is a descent direction if $\exists \alpha_0 > 0$ such that $f(x^{k+1}) < f(x^k)$ for all $\alpha \in (0, \alpha_0)$

- Recall the definition of directional derivative at x^k along direction d

$$Df(x^k)[d] \triangleq \lim_{\alpha \to 0} \frac{1}{\alpha} \left(f(x^k + \alpha d) - f(x^k) \right) = g_k^T d$$

Theorem

If the directional derivative along d is negative $\Rightarrow d$ is a descent direction

- What does this say about the angle between such d’s and g_k?
Pick a \textbf{descent direction} \mathbf{d}

- Newton’s direction is a descent direction if $\mathbf{H}_k \succ 0$ (why?)
- Gauss-Newton direction is a descent direction if \mathbf{J}_k is full column rank (why?)
- More generally, $\mathbf{d} = -\mathbf{B}g_k$ is a descent direction for any $\mathbf{B} \succ 0$ (why?)

Find the “best” step size α (exact line search) by solving

$$\minimize_{\alpha \in \mathbb{R}_{\geq 0}} f(\mathbf{x}_k + \alpha \mathbf{d})$$

- In practice \to \textbf{inexact} (backtracking) line search until achieve “sufficient” descent suffices: shrink an initial α until satisfy Armijo (or Wolfe) condition
- Resulting algorithms are sometimes called \textit{damped} Newton/Gauss-Newton
Globalization Strategies: Trust-Region

- **Plan**: Pick max step size first, then choose the step \(\mathbf{d} \)
- How much do we **trust** our local approximate quadratic model away from \(\mathbf{d} = \mathbf{0} \) (i.e., away from \(\mathbf{x}^k \))?

1. Pick a maximum step size \(\Delta_k \)
2. Pick \(\mathbf{d} \) by solving the trust-region subproblem

 \[
 \minimize_{\mathbf{d}} \ m_k(\mathbf{d}) \quad \text{such that} \quad \|\mathbf{d}\| \leq \Delta_k
 \]

3. Quantify and re-evaluate our trust on the model (i.e., \(\Delta \)) based on

 \[
 \frac{\text{actual reduction}}{\text{expected reduction}} = \frac{f(\mathbf{x}^k) - f(\mathbf{x}^k + \mathbf{d})}{m_k(\mathbf{0}) - m_k(\mathbf{d})}
 \]

- If ratio is above a threshold, accept \(\mathbf{d} \) (i.e., \(\mathbf{x}^{k+1} = \mathbf{x}^k + \mathbf{d} \)) and scale \(\Delta_k \) up by a factor (unless you get to a pre-defined global max value)
- If ratio is above a smaller threshold, accept \(\mathbf{d} \) but don’t change \(\Delta_k \)
- Otherwise, reject \(\mathbf{d} \) (\(\mathbf{x}^{k+1} = \mathbf{x}^k \)) and shrink \(\Delta_k \) by a factor
Trust Region vs. Line Search

Figures from Numerical Optimization by Nocedal and Wright
Trust Region

Figures from Numerical Optimization by Nocedal and Wright
A Trust-Region Method: Levenberg-Marquardt

- Has a trust-region interpretation
- Instead of solving the trust-region subproblem, adds a penalty term $\lambda \|d\|^2$ to $m_k(d)$ to penalize large d

$$\frac{1}{2} d^T (H_k) d + g_k^T d + f(x^k) + \lambda_k \|d\|^2 = \frac{1}{2} d^T (H_k + \lambda_k I) d + g_k^T d + f(x^k)$$

- Gives the solution of trust-region subproblem for a particular value of Δ_k
- Larger $\Delta_k \iff$ larger trust region \iff smaller penalty factor λ_k
- Often implemented using λ_k (penalty) rather than Δ_k (explicit constraint)
- λ_k is updated similar to Δ_k
- Originally was purposed for nonlinear least squares:
 - Levenberg $(J_k^T J_k + \lambda_k I) d = -J_k^T r(x^k)$
 - Marquardt $(J_k^T J_k + \lambda_k \text{diag}(J_k^T J_k)) d = -J_k^T r(x^k)$
- Interpolates between gradient descent (large λ) and (Gauss-)Newton (small λ) — (why?)
Our “Unconstrained Optimization” Trilogy: Big Reveal

- **Key idea:** Locally approximate the function with a quadratic model function and minimize the model

\[f(x^k + d) \approx f(x^k) + g_k^\top d + \frac{1}{2}d^\top B d \]

(ideally, \(B \succ 0 \))

- Setting the gradient to zero, we get:

\[B d = -g_k \]

- If \(B = H_k \) we get (pure) Newton (using actual second-order information!)
- If \(B = H_k + \lambda I \) we get (general) Levenberg-Marquardt
- In NLS problems, if \(B = J_k^\top J_k \) we get (pure) Gauss-Newton
- In NLS problems, if \(B = J_k^\top J_k + \lambda I \) we get (NLS) Levenberg-Marquardt
- If \(B = I \) we get gradient descent
- ...
Direct Methods for Solving Linear Systems

- Ultimately need to solve $A d = b$ where $A \in \text{Sym}(n)$ and $b \in \mathbb{R}^n$
 - e.g., in Gauss-Newton
 \[
 A = (J_k^T J_k) \quad \text{and} \quad b = -J_k^T r(x^k)
 \]
 - e.g., in Levenberg-Marquardt
 \[
 A = (J_k^T J_k + \lambda I) \quad \text{and} \quad b = -J_k^T r(x^k)
 \]
- Do not invert A!
 - Will lose structure (e.g., A may be sparse but A^{-1} will be generally dense)
 - Numerical stability
- We consider two direct methods based on Cholesky and QR factorizations
Cholesky solver

- Solving triangular systems (non-zero diagonal) is fast/easy (forward/backward substitution)

\[
\begin{pmatrix}
\ell_{11} & 0 & 0 \\
\ell_{21} & \ell_{22} & 0 \\
\ell_{31} & \ell_{32} & \ell_{33}
\end{pmatrix}
\begin{pmatrix}
y_1 \\
y_2 \\
y_3
\end{pmatrix}
=
\begin{pmatrix}
b_1 \\
b_2 \\
b_3
\end{pmatrix}
\]

- Cholesky decomposition (assuming \(A > 0 \))

 i. \(A = LL^\top \) where \(L \) is lower triangular and thus \(L^\top \) is upper triangular

\[
L L^\top d = b
\]

 ii. Solve \(Ly = b \) via forward substitution

 iii. Solve \(L^\top d = y \) via backward substitution
QR solver

- Note that $A = M^\top M$ and $b = M^\top c$ where $M \in \mathbb{R}^{m \times n}$
 - e.g., in Gauss-Newton $M = J_k$ and $c = -r(x^k)$
 - e.g., in Levenberg-Marquardt $M = \begin{bmatrix} J_k \\ \sqrt{\lambda} I_n \end{bmatrix}$ and $c = -\begin{bmatrix} r(x^k) \\ 0 \end{bmatrix}$

- “Economic” QR factorization of $M = QR$
 - $Q \in \mathbb{R}^{m \times n}$ and $Q^\top Q = I_n$
 - $R \in \mathbb{R}^{n \times n}$ is upper triangular

- Solve $Rd = Q^\top c$ instead of $Ad = b$

\[
\begin{align*}
Ad = b & \Rightarrow R^\top Q^\top QRD = R^\top Qc & Q^\top Q = I_n \\
& \Rightarrow R^\top Rd = R^\top Q^\top c & \text{premultiply by } R^{-\top} \\
& \Rightarrow \boxed{Rd = Q^\top c} & \text{solve via backward substitution}
\end{align*}
\]

- QR vs. Cholesky
 - ✔ QR does not need to form A - works with J_k or $\begin{bmatrix} J_k \\ \sqrt{\lambda} I_n \end{bmatrix}$
 - ✔ Better numerical stability than Cholesky
 - ✗ Slower than Cholesky
To be continued …

- We did not cover iterative (vs. direct) methods for solving (large) linear systems (see, e.g., conjugate gradient, Gauss-Seidel, etc)
- \(Ad = b \) has a number of algorithmically exploitable structures in geometric estimation problems such as SLAM and bundle adjustment
- We will see how these structures can be exploited to speed up solvers
Today’s Plan

- In robotics and computer vision, we often need to solve optimization problems involving rotations and poses – these variables do not live on (flat) vector spaces.
- But in the previous lectures we ignored the constraints on such variables (just like flat-Earthers!)
- Can we use generic constrained optimization methods? Yeahnah ...

Structure: Our (constrained) decision variables (rotations and rigid-body transformations) are matrix Lie groups (smooth manifolds and groups).

Idea: Exploit the smooth geometry of constraints and generalize Gauss-Newton (and other unconstrained algorithms) to do “unconstrained” optimization over our matrix Lie groups!

Advantages:

- Simpler, more natural, and faster methods
- Iterations never leave the feasible set (manifold)
- Can retain desirable traits of the algorithm in the unconstrained setting
Recall that in each iteration of unconstrained optimization over \mathbb{R}^n:

- Started at a point $x \in \mathbb{R}^n =: \mathcal{M}$
- Chose a “suitable” direction $d \in \mathbb{R}^n = T_x \mathcal{M}$ (“tangent space” at x)
- Next iterate was found by moving along the line $x + td$ with step size t that gives us sufficient descent:

$$x \leftarrow x + td =: R_x(td) \in \mathcal{M}$$

- In other words, we walked on a (flat) curve $t \mapsto x + td$ that starts $(t = 0)$ at x and has velocity d for t units of time
- This worked out in part because $x + td$ remained on our manifold $\mathcal{M} = \mathbb{R}^n$
This idea can be generalized to useful classes of manifolds beyond \mathbb{R}^n (e.g., spheres, orthogonal matrices, rotations, rigid-body transformations).

You can think of these manifolds (i.e., feasible set of our optimization problem) as “smooth surfaces” embedded in higher dimensional (Euclidean) ambient spaces (e.g., \mathbb{R}^n or $\mathbb{R}^{n \times n}$).

The idea is to treat constrained optimization problems with such constraints as “unconstrained” problems over the corresponding manifold.

But these manifolds are not “flat” anymore (i.e., not vector spaces).

If we move on a line, we’ll leave the manifold, resulting in infeasible points.
Introduction to Optimization on Manifolds: Key Idea

- A natural idea is to move on smooth curves that live on the manifold \(\gamma : (\epsilon, \epsilon) \to \mathcal{M} : t \mapsto \gamma(t) \) and pass through \(x \) at \(t = 0 \); i.e., \(\gamma(0) = x \)

- Velocities of all such curves live on the tangent space to \(\mathcal{M} \) at \(x \), i.e., \(T_x \mathcal{M} \)

- Fortunately, \(T_x \mathcal{M} \) is a vector space (i.e., \(T_x \mathcal{M} \cong \mathbb{R}^m \) for an \(m \)-dimensional manifold \(\mathcal{M} \))! Therefore, (with the help of a Riemannian metric) we can use the same ideas that underpin unconstrained optimization methods over Euclidean spaces to choose a velocity (search direction) \(d \in T_x \mathcal{M} \)

- After choosing a velocity \(d \in T_x \mathcal{M} \), we move on a curve that passes through \(x \) at \(t = 0 \) with initial velocity \(\dot{\gamma}(0) = d \) for \(t \) units of time (e.g., selected via "line" search)

- Geodesics (generalization of straight lines in \(\mathbb{R}^n \)) are the most natural choices for \(\gamma \) – but in practice, we may prefer computationally cheaper and simpler alternatives (approximations) called retractions \(R_x : T_x \mathcal{M} \to \mathcal{M} \)
Introduction to Optimization on Manifolds: Key Idea

\mathcal{M}

$T_x\mathcal{M}$

$R_x(td)$

x

d

Figure courtesy of Wen Huang
Introduction to Optimization on Manifolds: Key Idea

In Riemannian optimization methods, until convergence we:

- **Lift**: “Lift” (pullback) the objective function to the tangent space $\mathcal{T}_x \mathcal{M}$ using a retraction

- **Solve**: Use ideas from unconstrained optimization methods to choose a “direction” (velocity) d on the tangent space $\mathcal{T}_x \mathcal{M}$

- **Retract**: Choose t (e.g., in line search methods) and move from x to $R_x(td) \in \mathcal{M}$ where $R_x : \mathcal{T}_x \mathcal{M} \to \mathcal{M}$ is a retraction and $R_x(td) = \gamma(t)$ for a curve $\gamma : \mathbb{R} \to \mathcal{M} : t \mapsto \gamma(t)$ such that $\gamma(0) = x$ and $\dot{\gamma}(0) = d$;

 $$x \leftarrow R_x(td)$$

- Note that this generalizes the Euclidean iteration $R_x^{\text{Euc}}(td) = x + td$

http://tiny.cc/flat-earth-society

[activate layers (colored circles on the left) one by one]
Optimization over Matrix Lie Groups

The procedure that was just presented is quite general and can be easily implemented on any Riemannian manifold – we only need to be familiar with the geometry of our manifolds, choose a retraction, and use an optimization method on tangent spaces — in most cases, all of these are already well understood and readily available (see, e.g., Manopt)

We are particularly interested in (nonlinear) least squares problems that involve elements of $SO(p)$ and $SE(p)$ where $p \in \{2,3\}$ (i.e., 2/3D rotations and poses)

As we saw before, these manifolds are in fact matrix Lie groups and thus enjoy additional structures. This makes it even simpler to develop methods based on the lift-solve-retract framework

Specifically, it turns out that instead of (explicitly) operating on different tangent spaces $\mathcal{T}_x \mathcal{M}$ as x evolves, we can (equivalently) always pullback to the tangent space at the identity element $\mathcal{T}_{\text{Id}} \mathcal{M}$ (i.e., Lie algebra) and use matrix exponential to define retractions (in case of $SO(p)$, this even gives us geodesics).
Review: Special Orthogonal Group $SO(3)$

- We learned about $SO(3)$ (rotations) and $SE(3)$ (poses) in Lecture 3
- In matrix Lie groups, matrix exponential \exp maps elements in the Lie algebra (i.e., tangent space at the identity element) to the Lie group

$$\exp(A) \triangleq I + \sum_{k=1}^{\infty} \frac{A^k}{k!}$$

- Lie algebra (e.g., $se(3)$ and $so(3)$) has vector-space structure
- Basis “vectors” (generators)

$$\hat{\phi} \in so(3) \iff \hat{\phi} = \phi_1 G_1 + \phi_2 G_2 + \phi_3 G_3$$

where $\phi \in \mathbb{R}^3$ and

$$G_1 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix} \quad G_2 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix} \quad G_3 = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

- $\hat{\phi} = [\phi] \times \Rightarrow \hat{\phi} a = \phi \times a$
Review: Special Euclidean Group $\text{SE}(3)$

Similarly, for $\mathfrak{se}(3)$ consider $\phi \in \mathbb{R}^3$ and $\rho \in \mathbb{R}^3$ and the overloaded hat operator:

$$
\begin{bmatrix}
\phi \\
\rho
\end{bmatrix} \in \mathfrak{se}(3) \iff \begin{bmatrix}
\phi \\
\rho
\end{bmatrix} = \phi_1 G_1 + \phi_2 G_2 + \phi_3 G_3 + \rho_1 G_4 + \rho_2 G_5 + \rho_3 G_6
$$

where

$$
\begin{align*}
G_1 &= \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix} &
G_2 &= \begin{bmatrix}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix} &
G_3 &= \begin{bmatrix}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix} \\
G_4 &= \begin{bmatrix}
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix} &
G_5 &= \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix} &
G_6 &= \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{bmatrix}
\end{align*}
$$
Nonlinear Least Squares over Matrix Lie Groups

\[f(x) = \frac{1}{2} \| r(x_1, \cdots, x_n) \|^2 \]

where \(r : \mathcal{M} \triangleq \mathcal{M}_1 \times \mathcal{M}_2 \times \cdots \times \mathcal{M}_n \rightarrow \mathbb{R}^m \)

Example:

- \(x_1 \in \mathcal{M}_1 = SE(3) \subset \mathbb{R}^{4 \times 4} \) (3D pose)
- \(x_2 \in \mathcal{M}_2 = SO(3) \subset \mathbb{R}^{3 \times 3} \) (3D rotation)

- As we saw before, \(x^{k+1} = x^k + d \) is not valid anymore (e.g., adding \(d \) to a rotation matrix results in an infeasible point)
- Choose a search direction \(\hat{d} \) on the Lie algebra of \(\mathcal{M} \)
- Use \(x^{k+1} = x^k \exp(\hat{d}) \) to move “along” \(\hat{d} \) from \(x^k \) to \(x^{k+1} \)
- \(x^{k+1} \) is a feasible point (why?)

\(^1\)Review the definition of hat operator
\(^2\)Modulo some technical details
Linearizing Residual

- Gauss-Newton over \mathbb{R}^n

$$r(x^k + d) \approx r(x^k) + J_k d$$ where

$$J_k = \left. \frac{\partial r(x)}{\partial x} \right|_{x=x^k} = \left. \frac{\partial r(x^k + d)}{\partial d} \right|_{d=0}$$

- Gauss-Newton over $SO(3) - d \in \mathbb{R}^3$

$$r(x^k \exp(\hat{d})) \approx r(x^k) + \tilde{J}_k d$$ where

$$\tilde{J}_k = \left. \frac{\partial r(x^k \exp(\hat{d}))}{\partial d} \right|_{d=0}$$

- Gauss-Newton over $SE(3) - d \in \mathbb{R}^6$

$$r(x^k \exp(\hat{d})) \approx r(x^k) + \tilde{J}_k d$$ where

$$\tilde{J}_k = \left. \frac{\partial r(x^k \exp(\hat{d}))}{\partial d} \right|_{d=0}$$
Lift-Solve-Retract for NLS over Matrix Lie Groups

\[x^{k+1} = x^k \exp(\hat{d}) \]

1. Lift (pullback) to the tangent space at the indentity element (Lie algebra):

\[g : \mathbb{R}^{n_d} \to \mathbb{R}^m : d \mapsto r(x^k \exp(\hat{d})) \]

 e.g., \(n_d = 3 \) in \(\text{SO}(3) \) and \(n_d = 6 \) in \(\text{SE}(3) \)

 \[g(d) \approx g(0) + \frac{\partial g(d)}{\partial d} \bigg|_{d=0} d \] \hspace{1cm} \text{(Taylor at } d = 0) \]

 \[r(x^k \exp(\hat{d})) \approx r(x^k) + \tilde{J}_k d \] \hspace{1cm} \text{(definition of } g) \]

2. Solve for \(d \) by solving a (flat) linear least squares

\[
\begin{align*}
\text{minimize} & \quad \frac{1}{2} \| r(x^k \exp(\hat{d})) \|^2 \\
\text{subject to} & \quad \frac{1}{2} \| r(x^k) + \tilde{J}_k d \|^2
\end{align*}
\]
Several Tips for Computing \hat{J}_k

- Note that \hat{J}_k is evaluated at $d = 0$
- A first-order approximation of $\exp(\hat{d})$ at $d = 0$ (why?)

$$\exp(\hat{d}) \approx I + \hat{d}$$

- Use the chain rule and vectorization of matrices (for convenience):

$$\hat{J}_k = \left. \frac{\partial r(x^k \exp(\hat{d}))}{\partial d} \right|_{d=0} = \left. \frac{\partial r_{\text{vec}}(s)}{\partial s} \right|_{s=\text{vec}(x^k)} \left. \frac{\partial \text{vec}(x^k \exp(\hat{d}))}{\partial d} \right|_{d=0}$$

- Usual Jacobian - compute partial derivatives wrt elements of d
- You can also use $\hat{d} = \sum_i d_i G_i$ and take derivatives w.r.t. each d_i (i.e., columns of \hat{J}_k)

- Useful identity: $\text{vec}(AB) = (I \otimes A)\text{vec}(B)$ where \otimes denotes Kronecker product
Example with Multiple Variables

- Consider $\| r(x_1, x_2) \|^2$ where $x_1 \in \mathbb{R}^3$ (e.g., 3D point) and $x_2 \in SO(3)$

$$\| r(x_1^k, x_2^k, \exp(\hat{d}_2)) \|^2 \approx \| r(x_1^k, x_2^k) + J_{1,k} d_1 + \tilde{J}_{2,k} d_2 \|^2$$

$$J_{1,k} \triangleq \left. \frac{\partial r(x)}{\partial x_1} \right|_{x=(x_1^k, x_2^k)} = \left. \frac{\partial r(x_1^k + d_1, x_2^k)}{\partial d_1} \right|_{d_1=0}$$

$$\tilde{J}_{2,k} \triangleq \left. \frac{\partial r(x_1^k, x_2^k, \exp(\hat{d}_2))}{\partial d_2} \right|_{d_2=0}$$

- Solve the resulting linear least squares

- Retract: $x_1^{k+1} = x_1^k + d_1$ and $x_2^{k+1} = x_2^k \exp(\hat{d}_2)$