Homework 2: Chemical vs. Electrical Thrusters

a) Chemical:
We start outside the sphere of influence (SOI) of Earth, and end outside the SOI of Mars, so no “escape” or “capture” ΔVs are involved. The whole motion is under the Sun’s influence alone.

To enter the transfer orbit:

$$\Delta V_1 = v_{\text{perihelion}} - v_{c,\text{Earth}} = \frac{\mu_S}{r_E} \left(\sqrt{\frac{2r_M}{r_E + r_M}} - 1 \right)$$ \hspace{1cm} (1)$$

Known and calculated values:

$\mu_S = 1.327E20 \text{ m}^3 \text{s}^{-2}$
$r_E = 1.496E11 \text{ m}$
$r_M = 1.5237 \times r_E = 2.279E11 \text{ m}$
$v_{c,\text{Earth}} = 29,780 \text{ m s}^{-1}$
$v_{c,\text{Mars}} = 24,130 \text{ m s}^{-1}$

Substituting values:

$$\Delta V_1 = 29,780 \left(\sqrt{\frac{2+1.5237}{2.5237}} - 1 \right) = 2,945 \text{ m s}^{-1}$$

To enter circular orbit near Mars:

$$\Delta V_2 = v_{c,\text{Mars}} - v_{\text{apohelion}} = \frac{\mu_S}{r_M} \left(1 - \sqrt{\frac{2r_E}{r_E + r_M}} \right)$$ \hspace{1cm} (2)$$

$$\Delta V_2 = 24,130 \left(1 - \frac{2}{\sqrt{2.5237}} \right) = 2,649 \text{ m s}^{-1}$$

Total ΔV:

\[\Delta V = \Delta V_1 + \Delta V_2 = 5.549 \text{ m/s (Chemical)} \]

Transfer duration:
The transfer time is \(\frac{1}{3} \) the orbital time in the transfer ellipse.

Semiaxis: \(a = \frac{r_{\text{initial}} + r_{\text{final}}}{2} = 1.8877E11 \text{ m} \)
\[
\Delta t = \frac{1}{2} \cdot 2\pi \cdot \frac{a^{3/2}}{\sqrt{\mu_s}} \quad (3)
\]
\[\Delta t = 2.237E7 \text{ s} = \frac{2.237E7}{86400} = 259 \text{ days} \]
\[
\frac{M_{\text{pay}}}{M_0} = e^{-\Delta V/c} - \varepsilon \quad (4)
\]
\[M_{\text{pay}} = 20,000 \left(e^{-\frac{5.547}{4.500}} \right) - 0.05 = 4,770 \text{ kg} \]

b) Electrical:
The propulsive \(\Delta V \) is now:
\[\Delta V = v_{\text{c,E}} - v_{\text{c,M}} = 29,780 - 24,130 = 5,650 \text{ m/s (Electric Propulsion)} \]

This is only slightly more than the chemical \(\Delta V \); for transfers to larger radii, the difference is more noticeable.

For optimization of the low-thrust mission, define non-dimensional variables:

\[\mu = \frac{M_{\text{pay}}}{M_0} \quad (5)\]
\[v = \frac{\Delta V}{c} \quad (6)\]
\[\lambda = \frac{a_0 \alpha \Delta V}{2 \eta} \quad (7)\]
\[\varepsilon = \frac{M_{\text{str}}}{M_0} \quad (8)\]

\(\alpha = 10 \frac{\text{kg}}{\text{kW}} = 0.01 \frac{\text{kg}}{\text{W}} \) is the specific mass (per unit power) of the power and propulsion equipment.

\(a_0 \) is the initial acceleration.

Combining expressions:
\[\mu = e^{-v} - \frac{\lambda}{v} - \varepsilon \quad (9)\]

To find the best specific impulse \(c \), we have differentiate with respect to \(v \):
\[-e^{-v} + \frac{\lambda}{v^2} = 0\]
\[\lambda = v^2 e^{-v} \quad (10) \]

Substituting values:

\[\lambda = \frac{0.01 \times 5650}{2 + 0.7} = 40.39 a_0 \]

For each value of \(a_0 \) we then need to solve (by trial and error) the equation:

\[40.39 a_0 = v_{\text{opt}}^2 e^{-v_{\text{opt}}} \quad (11) \]

Once \(v_{\text{opt}} \) is known, we calculate:

\[c_{\text{opt}} = \frac{\Delta V}{v_{\text{opt}}} = \frac{5650}{v_{\text{opt}}} \]

The implied transfer time follows from:

\[\Delta t = \frac{\mu_{\text{prop}}}{m} = \frac{M_0}{\frac{c}{v_{\text{opt}}} (1 - e^{-\frac{\Delta V}{c}})} = \frac{c}{a_0} \left(1 - e^{-\frac{\Delta V}{c}} \right) \approx \frac{\Delta V}{a_0} \text{ if } \frac{\Delta V}{c} \ll c \quad (12) \]

The power per unit initial mass:

\[\frac{P}{M_0} = \frac{\Delta V}{2\eta} = \frac{a_0 c}{2\eta} \quad (13) \]

Finally, the payload mass is:

\[\mu_{\text{pay}} = \mu_{\text{opt}} M_0 = M_0 \left(e^{-v_{\text{opt}}} - \frac{\lambda}{v_{\text{opt}}} - \varepsilon \right) \quad (14) \]

The results are tabulated below for a range of initial accelerations:

<table>
<thead>
<tr>
<th>(a_0) [m/s^2]</th>
<th>(\lambda)</th>
<th>(v_{\text{opt}})</th>
<th>(c_{\text{opt}} [m/s])</th>
<th>(\Delta t [\text{days}])</th>
<th>(\frac{P}{M_0} [W/kg])</th>
<th>(M_{\text{pay}} [kg])</th>
<th>(P [\text{MW}])</th>
</tr>
</thead>
<tbody>
<tr>
<td>1E-4</td>
<td>4.039E-3</td>
<td>0.06567</td>
<td>86052</td>
<td>633.3</td>
<td>6.149</td>
<td>16498</td>
<td>0.123</td>
</tr>
<tr>
<td>2E-4</td>
<td>8.078E-3</td>
<td>0.09421</td>
<td>60004</td>
<td>322.2</td>
<td>8.572</td>
<td>15486</td>
<td>0.1714</td>
</tr>
<tr>
<td>4E-4</td>
<td>0.01616</td>
<td>0.1361</td>
<td>41536</td>
<td>152.9</td>
<td>11.867</td>
<td>14082</td>
<td>0.2373</td>
</tr>
<tr>
<td>6E-4</td>
<td>0.02423</td>
<td>0.1694</td>
<td>33371</td>
<td>100.3</td>
<td>14.302</td>
<td>13024</td>
<td>0.286</td>
</tr>
</tbody>
</table>

We see several important things here:

a) For any specific power \(\frac{P}{M_0} \geq 10 \text{ W/kg} \), the transfer is faster than chemical.

b) The payload delivered is 3-4 times greater than with chemical.

c) The specific impulse is in the range from 3,400s to 8,700s.
d) The required power is from 120-290 KW, possible with large solar arrays.