Homework 4.1: Solid Propellant Rocket

1a) Normal operation mass balance:
\[a \rho_p A_p P_{c0}^n - \frac{A_t P_{c0}}{c^*} = 0 \] \hspace{1cm} (1)

Transient operation after port opening:
\[\frac{V_c}{RT_c} \frac{dP_c}{dt} = a \rho_p A_p P_{c0}^n - \frac{(A_t + A_p) P_c}{c^*} \] \hspace{1cm} (2)

Define:
\[t_{ch} = \frac{V_c c^*}{RT_c A_b} \] \hspace{1cm} (3)
\[\tau = \frac{t}{t_c} \] \hspace{1cm} (4)
\[\alpha = \frac{A_p}{A_t} \] \hspace{1cm} (5)
\[y = \frac{P_c}{P_{c0}} \] \hspace{1cm} (6)

In terms of these variables, equation (2) becomes:
\[\frac{dy}{d\tau} = y^n - (1 + \alpha) y \] \hspace{1cm} (7)

Multiply equation (7) by \(y^{-n} \):
\[y^{-n} \frac{dy}{d\tau} = 1 - (1 + \alpha) y^{1-n} \] \hspace{1cm} (8)
\[(1 - n) y^{-n} dy = d(y^{1-n}) \]

Define:
\[y^{1-n} = u \] \hspace{1cm} (9)
\[\frac{1}{1-n} \frac{du}{d\tau} = 1 - (1 + \alpha) u \] \hspace{1cm} (10)

This relationship is linear and can be easily solved. The particular solution is \(u = \frac{1}{1+\alpha} \), and the homogeneous solution is \(u = e^{-(1-n)(1+\alpha)\tau} \). The complete solution is then \(u = \frac{1}{1+\alpha} + Ae^{-(1-n)(1+\alpha)\tau} \), where \(A \) is arbitrary.

At \(t = 0 \) (\(\tau = 0 \)), we have \(P_c = P_{c0} \) (\(y = u = 1 \)), so
\[1 = \frac{1}{1+\alpha} + A \]
\[A = \frac{1}{1+\alpha} \]

Therefore:
\[u = \frac{1 + \alpha e^{-(1-n)(1+\alpha)\tau}}{1 + \alpha} \]

Using \(y = u^{1-n} \):

\[y = \left(\frac{1 + \alpha e^{-(1-n)(1+\alpha)\tau}}{1 + \alpha} \right)^{\frac{1}{1-n}} \] \((11) \)

1b) The combustion stops when \(P_c \leq 20 \text{ atm} \) \(\left(y_{\text{extinction}} = \frac{20}{70} = \frac{2}{7} \right) \). For \(t \to \infty \) \((\tau \to \infty) \), we obtain from equation \((11) \):

\[y(\infty) = \frac{1}{(1+\alpha)^{1-n}} \] \((12) \)

For this to be equal or less than \(\frac{2}{7} \), \(\alpha \) must be more than:

\[\alpha_{\text{min}} = \left(\frac{1}{y(\infty)} \right)^{1-n} - 1 = \left(\frac{7}{2} \right)^{1-0.2} - 1 \] \((13) \)

\[\left(\frac{A_p}{A_t} \right)_{\text{min}} = 1.724 \] \((14) \)

For values of \(\alpha > 1.724 \), the extinction limit \(y = \frac{2}{7} \) is reached in a finite time. Solving equation \((11) \) for \(\tau \) gives:

\[\tau_{\text{ext}} = \frac{1}{(1+\alpha)(1-n)} \ln \left(\frac{\alpha}{(1+\alpha)y_{\text{ext}}^{1-n-1}} \right) \] \((15) \)

Since \(n = 0.2 \) and \((1 + \alpha)y_{\text{ext}}^{1-n} = \frac{(1+\alpha)}{(1+\alpha_{\text{min}})}(1 + \alpha_{\text{min}})y_{\text{ext}}^{1-n} \):

\[\tau_{\text{ext}} = \frac{1}{0.8(1+\alpha)} \ln \left(\frac{\alpha}{(2.724 - 1)} \right) \] \((16) \)

\[t_{\text{ext}} = \tau_{\text{ext}} \frac{V_c^*}{R T_c A_t} \] \((17) \)

Assuming a molecular mass \(M = 20 \text{ g mole}^{-1} \) (not specified in problem statement),

\[\frac{V_c^*}{R T_c A_t} = \frac{10 \times 1800}{0.02 \times 3400} = 1.274 \times 10^{-2} \text{ s} \] \((18) \)

We can now calculate a few extinction times corresponding to choices of \(\frac{A_p}{A_t} \) above the minimum, shown in Table 1.

Table 1: Extinction Times

<table>
<thead>
<tr>
<th>(\alpha = \frac{A_p}{A_t})</th>
<th>1.724</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\tau_{\text{ext}})</td>
<td>(\infty)</td>
<td>1.243</td>
<td>0.5803</td>
<td>0.3915</td>
</tr>
<tr>
<td>(t_{\text{ext}} \text{ [s]})</td>
<td>(\infty)</td>
<td>1.583e-2</td>
<td>7.42e-3</td>
<td>4.99e-3</td>
</tr>
</tbody>
</table>
Homework 4.2: Monopropellant Hydrazine Rocket

Rapid disproportionation: \[N_2H_4 \rightarrow \frac{4}{3} NH_3 + \frac{1}{3} N_2 \] (1)

Slow \(NH_3 \) decomposition: \[\frac{4}{3} NH_3 \rightarrow \frac{2}{3} N_2 + 2H_2 \] (2)

Since we assume 40\% Ammonia decomposition, form equation (1) + 0.4*equation (2):

\[N_2H_4 \rightarrow \frac{4}{3} (1 - 0.4) NH_3 + \frac{1+0.8}{3} N_2 + 0.4 * 2H_2 \] (3)

\[N_2H_4 \rightarrow 0.8NH_3 + 0.6N_2 + 0.8H_2 \] (4)

We can now write the enthalpy balance for the reaction. The enthalpy of the reactants (liquid Hydrazine at 298.2K) is +50.63 kJ/mol, so using the fits provided for gaseous \(NH_3, N_2, \) and \(H_2 \):

\[50.63 = 0.8(-70.40 + 51.166\theta + 4.11\theta^2) + 0.6(-11.84 + 32.42\theta + 0.76\theta^2) + \ldots \]
\[+0.8(-8.23 + 27.16\theta + 1.34\theta^2) \]

\[4.976\theta^2 + 82.508\theta - 120.64 = 0 \]

\[\theta = \frac{-82.508 \pm \sqrt{82.508^2 + 4 \times 4.976 \times 120.64}}{2 \times 4.976} = 1.352 = \frac{T}{1000} \] (5)

\[T = 1352K \]

Mean molecular mass:

\[\bar{M} = \frac{0.8 \times 17 + 0.6 \times 28 + 0.8 \times 2}{0.8 + 0.6 + 0.8} = 16.0 \frac{g}{mol} = 0.016 \frac{kg}{mol} \]

Mean specific heat:

\[c_p = \frac{0.8(c_p)_{NH_3} + 0.6(c_p)_{N_2} + 0.8(c_p)_{H_2}}{(0.8 + 0.6 + 0.8)} \]

\[(c_p)_{NH_3} = \frac{\partial h_{NH_3}}{\partial T} = \frac{1}{1000} \frac{\partial h_{NH_3}}{\partial \theta} = \frac{51.66}{1000} \frac{kJ}{mol \cdot K} = 51.66 \frac{J}{mol \cdot K} \]

\[(c_p)_{N_2} = \frac{\partial h_{N_2}}{\partial T} = \frac{1}{1000} \frac{\partial h_{N_2}}{\partial \theta} = \frac{32.42}{1000} \frac{kJ}{mol \cdot K} = 32.42 \frac{J}{mol \cdot K} \]

\[(c_p)_{H_2} = \frac{\partial h_{H_2}}{\partial T} = \frac{1}{1000} \frac{\partial h_{H_2}}{\partial \theta} = \frac{27.61}{1000} \frac{kJ}{mol \cdot K} = 27.61 \frac{J}{mol \cdot K} \]

\[c_p = \frac{0.4 \times 51.66 + 0.3 \times 32.42 + 0.4 \times 27.61}{0.016} = 2.590 \frac{J}{kg \cdot K} \]

We could now calculate \(c_p = 2.590 - \frac{0.314}{0.016} = 2.070 \frac{J}{kg \cdot K} \) and so \(\frac{c_p}{c_p} = 1.2512 \)