Idealized Direct GTO Injection
(GTO = Geosynchronous Transfer Orbit)

Assumptions:

- Ignore drag and "gravity" losses
- Assume impulsive burns (instantaneous impulse delivery)
- Assume all elevations $\alpha > 0$ at launch are acceptable

Launch is from a latitude L, directed due East for maximum use of Earth's rotation. The Eastward added velocity due to rotation is then

$$V_R = \Omega R_E \cos L = 463 \cos L \text{ (m/s)} \quad (1)$$

If the launch elevation is α, and the desired velocity after the first burn is V_1, the rocket must supply a velocity increment

$$\Delta V_1 = \sqrt{V_1^2 + V_R^2 - 2 V_1 V_R \cos \alpha} \quad (2)$$

The trajectory will then lie in a plane LOI through the Earth's center which contains the local E-W line. In order to be able to perform the plane change to the equatorial plane at GEO, we select the elevation α such as to place the apogee of the transfer orbit (GTO) at the GEO radius $R_{GEO} = \left(\frac{\mu T^2}{4\pi^2}\right)^{1/3} = \frac{42,200}{T = 24 \text{ hr}, \mu = 3.986 \times 10^{14} \text{ m}^3/\text{s}^2}$
Since OL is perpendicular to OI, the view in the plane of the orbit is:

The polar equation of the trajectory is
\[r = \frac{p}{1 + e \cos \theta}, > 0 \]

In our case \(p = R_E \) (corresponding to \(\theta = \frac{\pi}{2} \)). The elevation is given by
\[
\tan \alpha = \left(\frac{dr}{r \, d\theta} \right)_{\theta = \pi / 2} = \left(\frac{e \sin \theta}{(1 + e \cos \theta)^2} \right)_{\theta = \pi / 2} = e
\]

and, in turn, the eccentricity follows from (at \(\theta = \pi \))

\[
R_{GEO} = \frac{R_e}{1 - e} \quad \quad e = 1 - \frac{R_e}{R_{GEO}}
\]

and so \(\tan \alpha = 1 - \frac{R_e}{R_{GEO}} = 0.849 \); \(\alpha = 40.3^\circ \) (3)

The angular momentum (per unit mass) is \(h = \sqrt{\mu p} = \sqrt{\mu R_e} \).

Equating this to \(R_e V_i \cos \alpha \),

\[
V_i \cos \alpha = \frac{\mu}{\sqrt{R_e}}
\]

(i.e., the horizontal projection of the launch velocity is the local orbital speed, for any apogee radius, \(R_{GEO} \) in this case)

Combining (3) and (4),

\[
V_i = \frac{\mu}{R_e} \left[1 + \left(1 - \frac{R_e}{R_{GEO}} \right)^2 \right]^{1/2}
\]

and this can now be substituted in (2):

\[
\Delta V_i = \frac{\mu}{\sqrt{R_e}} \left[1 + \left(1 - \frac{R_e}{R_{GEO}} \right)^2 \right] + v_r^2 - 2v_r \sqrt{\mu R_e}
\]

\[
\Delta V_i = \sqrt{\left(\frac{\mu}{R_e} - v_r \right)^2 + \frac{\mu}{R_e} \left(1 - \frac{R_e}{R_{GEO}} \right)^2}
\]

Upon arrival at I, there will have to be a second burn that will simultaneous accelerate the rocket to \(v_{GEO} = \frac{\mu}{\sqrt{R_{GEO}}} \), and rotate the plane to equatorial (\(\Delta i = L \)).
The apogee velocity is \(v_{a,GTO} \), given by

\[
R_{GEO} v_{a,GTO} = (V_i \cos \alpha)R_E = \sqrt{\mu}R_E
\]

(7)

and so \(\Delta v_a = \sqrt{v_{GEO}^2 + v_{a,GTO}^2 - 2v_{GEO}v_{a,GTO} \cos \Delta i} \)

\[
\Delta v_a = \sqrt{\frac{\mu}{R_{GEO}}} \sqrt{1 + \frac{R_E}{R_{GEO}} - 2 \frac{R_E}{R_{GEO}} \cos \Delta L}
\]

(8)

This second burn is probably provided by the spacecraft itself, or else by the launcher's upper stage.

IDEALIZED TWO - BURN GTO INJECTION

One difficulty with the direct injection scheme is the fact that GEO insertion at \(I \) must occur on the first pass, because the GTO perigee is actually below the Earth's surface (see Fig. 2). Most operators prefer a temporary parking of the spacecraft in a GTO orbit which has a perigee above the ground, so as to make functional tests and adjustments prior to the final apogee burn (over a period of 2-4 weeks). A modification of the launch sequence to accommodate this is:

(1) Fire Eastwards with \(\alpha \) selected for a low apogee (– 200 km above ground) at the equatorial crossing.
(2) Fire again at equatorial crossing to raise the apogee to \(R_{GEO} \) (no plane change)
(3) At one of the apogee passes, perform the final (circularization + plane change burn).
The formulation is very similar to the previous case. The elevation α is now given by

$$\tan \alpha = 1 - \frac{R_E}{R_p}$$ \hspace{1cm} (9)

(R_p = perigee radius = $R_E + 200$ km).

This gives a very shallow trajectory, which is unrealistic; but it is a fair approximation to a real high-elevation launch, followed by a rapid rotation during the rocket firing. For $R_p - R_e = 200$ km, $\alpha = 1.74^\circ$.

Eqs. (5) and (6) still hold, with the quality R_{GEO} replaced by R_p, and so

$$\Delta V_1 = \sqrt{\left(\frac{\mu}{R_E} - \frac{v_r}{R_p}\right)^2 + \frac{\mu}{R_E} \left(1 - \frac{R_E}{R_p}\right)^2}$$ \hspace{1cm} (10)

which is now smaller, since we are going to a much lower apogee (at r_p).

At this apogee (at the equatorial crossing), we have, as in Eq. (7),

$$v_a = \sqrt{\frac{\mu R_E}{R_p}}$$ \hspace{1cm} (11)

and we next need to effect a second rocket firing that will increase velocity to that for the GTO perigee:

$$v_{\text{GTO}} = \sqrt{\frac{\mu}{R_p \left(1 + \frac{2R_{\text{GEO}}}{R_p + R_{\text{GEO}}^2}\right)}}$$ \hspace{1cm} (12)
No plane change is involved yet, so

$$\Delta V_2 = \frac{\mu}{\sqrt{R_p}} \left[\frac{2R_{GEO}}{\sqrt{R_p + R_{GEO}} - \sqrt{R_p}}\right]$$

(13)

This places the spacecraft on an elliptical GTO orbit, still in the original plane, with apogee at R_{GEO}. The speed at this apogee is:

$$v_{a,GTO} = \frac{\mu}{\sqrt{R_{GEO}}} \frac{2R_p}{R_p + R_{GEO}}$$

(14)

and so,

$$\Delta V_a = \sqrt{v_{GEO}^2 + v_{a,GTO}^2 - 2v_{GEO} v_{a,GTO} \cos L}$$

$$\Delta V_a = \frac{\mu}{\sqrt{R_{GEO}}} + \frac{\mu}{\sqrt{R_{GEO}}} \frac{2R_p}{R_p + R_{GEO}} - 2 \frac{\mu}{\sqrt{R_p + R_{GEO}}} \frac{2R_p}{\sqrt{R_p + R_{GEO}}} \cos L$$

(15)
Some numerical comparisons

We will illustrate these ΔV's by considering launches to GEO from two different locations:

1. Near the Equator, on at the French kouron complex, and
2. From mid-latitude, as from Café Canoveral ($L = 28.5^\circ$).

(1) Equatorial Launch

Option (a): Ground to LEO (300 km), plus LEO-GEO Hohman transfer. No plane changes. Launch to the East.

\[
\Delta V = \Delta V_1 + \Delta V_2 - V_R + \Delta V_3 + \Delta V_4
\]

\[
\Delta V = (8084 - 463) + (10,151 - 7725) + (3071 - 1573)
\]

\[
= 7,621 + 2,426 + 1,498 = 11,545 \text{ m/s}
\]

Notice this is more than to Escape from mean Earth ($\Delta V = 11,200 \text{ m/s}$)

Option (b): Direct injection into GTO from ground

\[
\Delta V = \Delta V_2 + \Delta V_3
\]

\[
= (10,420 - 463) + (3071 - 1573)
\]

\[
= 9,957 + 1,498 = 11,455 \text{ m/s}
\]

(2) Launch from $L = 28.5^\circ$. Launch to East, $\nu_R = 407 \text{ m/s}$

Option (a): Direct injection to GTO, circularization + plane change at GEO. 2 firings,

\[
\Delta V = \Delta V_1 + \Delta V_2
\]

\[
= 10,070 + 2,102 = 12,172 \text{ m/s}
\]

Note the two penalizations for latitude: the elevated launch increased ΔV_1, and the plane change at GEO increases ΔV_2.

Option (b) Direct injection with 3 firings (LEO at 300km)

\[
\Delta V = \Delta V_1 + \Delta V_2 + \Delta V_3
\]

\[
= 7,512 + 2,605 + 1,830 = 11,947 \text{ m/s}
\]
Is it true that plane change should be all done at end of GTO?

Actually, a small turning combined with initial ΔV_1 (say, from LEO) costs very little ΔV loss, even though V is then large. Try splitting into a Δi_1 and $\Delta i_2 = \Delta i - \Delta i_1$

$$\Delta V_1 = \sqrt{v_c^2 + v_{\text{p,over}}^2 - 2v_c v_{\text{p,over}} \cos \Delta i_1}$$

$$\Delta V_2 = \sqrt{v_c^2 + v_{\text{p,over}}^2 - 2v_c v_{\text{p,over}} \cos (\Delta i - \Delta i_1)}$$

$$\Delta V = \Delta V_1 + \Delta V_2$$

$$\frac{d\Delta V}{d\Delta i_1} = \frac{1}{2} v_c V_{\text{p,over}} \sin \Delta i_1 - \frac{1}{2} v_c V_a \sin (\Delta i - \Delta i_1) = 0$$

$$v_c_1 = \sqrt{\frac{\mu}{R_1}}, \quad v_c_2 = \sqrt{\frac{\mu}{R_2}}, \quad v_p = \sqrt{\frac{\mu}{R_1 + R_2}}, \quad v_a = \sqrt{\frac{\mu}{R_2}}$$

Call $\rho = \frac{R_2}{R_1}$

$$\sqrt{\frac{2\rho}{1 + \rho}} \sin \Delta i_1 \sqrt{1 + 2\rho - 2 \frac{2\rho}{1 + \rho} \cos \Delta i_1} = \frac{1}{\sqrt{\rho}} \sqrt{\frac{2\rho}{1 + \rho}} \sin (\Delta i - \Delta i_1) \sqrt{1 + \frac{2\rho}{1 + \rho} - 2 \frac{2\rho}{1 + \rho} \cos (\Delta i - \Delta i_1)}$$

$$\frac{2\rho}{1 + \rho} \sin^2 \Delta i_1 \left[1 + \frac{2}{1 + \rho} - 2 \frac{2\rho}{1 + \rho} \cos (\Delta i - \Delta i_1)\right] = \frac{1}{\rho} \frac{2\rho}{1 + \rho} \sin^2 (\Delta i - \Delta i_1) \left[1 + \frac{2\rho}{1 + \rho} - 2 \frac{2\rho}{1 + \rho} \cos \Delta i\right]$$

$$\rho = \frac{42200}{6370 + 500} = 6.14265 \quad \frac{2\rho}{1 + \rho} = 1.31148$$

$$1.31148 \sin \Delta i_1 \sqrt{1 + 1.71999 - 2 \times 1.31148 \cos \Delta i_1} = \frac{0.52916 \sin (28.5 - \Delta i_1)}{6.14265 \sqrt{1 + 0.28001 - 2 \times 0.52916 \cos (28.5 - \Delta i_1)}}$$
\[
\begin{align*}
\frac{\sin \Delta \iota_1}{\sqrt{2.71999 - 2.62296 \cos \Delta \iota_1}} &= \frac{0.16280 \sin(28.5 - \Delta \iota_1)}{\sqrt{1.28001 - 1.05832 \cos(28.5 - \Delta \iota_1)}} \\
\Delta \iota_1 &= 2.26^\circ \text{ optimum} \\
\Delta \iota_2 &= 26.24^\circ
\end{align*}
\]

\[
\left(\frac{\Delta V}{V_{c_1}} \right)_{op} = \sqrt{1 + \frac{2\rho}{1 + \rho} - 2\frac{2\rho}{1 + \rho} \cos \Delta \iota_1} + \frac{1}{\sqrt{\rho}} \left(\frac{1 + 2\rho}{1 + \rho} - \frac{2}{\sqrt{6.14265}} \right) \cos \Delta \iota_2
\]

\[
= 0.30178 + 0.23227 = 0.53405 \quad \text{- small improvement}
\]

Compare to same with \(\Delta \iota_1 = 0 \)

\[
\left(\frac{\Delta V}{V_{c_1}} \right)_{ref} = 0.29838 + 0.23868 = 0.53706 \quad \text{- small improvement}
\]
Example: Effects of doing a small plane change \(\Delta i_2 \) simultaneous with the second (apogee-raising) firing in a 3-impulse direct GTO injection.

Total \(dV \) for three-impulse launch from \(L=28.5 \) deg to GEO. Here \(v_cE = \sqrt{\mu/RE} \)
dV1 for three-impulse launch from L=28.5 deg to GEO. Here \(v_{CE} = \sqrt{\mu/RE} \)
dV1 for three-impulse launch from L=28.5 deg to GEO. Here vCE=\sqrt{\mu/RE}
dV_3/vc_E for three-impulse launch from $L=28.5$ deg. to GEO. Here, $vc_E=\sqrt{\mu/RE}$