Maxwellian Collisions

Maxwell realized early on that the particular type of collision in which the cross-section varies at $Q_{rs}^* \sim 1/g$ offers drastic simplifications. Interestingly, this behavior is physically correct for many charge-neutral collisions and moderate energies: The charge q polarizes the neutral in proportion to the field ($\alpha \sim q/r^2$) and the dipole α attracts the particle with a force $F \sim \alpha/r^3 \sim q/r^5$. From our work on power-law potentials, this is the interaction type that leads to $Q^* \sim 1/g$.

The simplification stems from the fact that the group $gQ_{rs}^*(g)$ appears in the integrals for \tilde{M}_{rs} and E_{rs}, and can now be moved outside as a constant. We put,

$$Q_{rs}^*(g) = \frac{g_0}{g} Q_{rs}^*(g_0)$$

then

$$\tilde{M}_{rs} = \mu_{rs} g_0 Q_{rs}^*(g_0) \int_{w_s w_r} \int f_r f_s (\tilde{w}_r - \tilde{w}_s) d^3 w_r d^3 w_s =$$

$$= \mu_{rs} g_0 Q_{rs}^*(g_0) \left[\int_{w_s} f_s d^3 w_s \int_{w_r} \tilde{w}_r f_r d^3 w_r - \int_{w_r} f_r d^3 w_r \int_{w_s} \tilde{w}_s f_s d^3 w_s \right]$$

$$\tilde{M}_{rs} = \mu_{rs} g_0 Q_{rs}^*(g_0) n_r n_s (\tilde{u}_r - \tilde{u}_s)$$

Define ν_{sr} as the collision frequency of one s-particle will all r-particles,

$$\nu_{sr} = n_r g Q_{rs}^*(g) \text{ constant for Maxwellian collisions} \quad (1)$$

Similarly, $\nu_{rs} = n_s g Q_{rs}^*(g)$ (Note: $\nu_{sr}/n_r = \nu_{rs}/n_s$)

$$\tilde{M}_{rs} = \mu_{rs} n_s \nu_{sr} (\tilde{u}_r - \tilde{u}_s) = \mu_{rs} n_r \nu_{rs} (\tilde{u}_r - \tilde{u}_s) \quad (2)$$

For other types of collisions the evaluation is much less straightforward, as it requires prior solution for f_r and f_s. However, the form $\tilde{M}_{rs} = \mu_{rs} n_r \nu_{rs} (\tilde{u}_r - \tilde{u}_s)$ can always be recovered, only the collision frequency ν_{rs} is generally not a constant, but a function of the electron temperature, and is calculated from some of the existing models for f_r and f_s.
For energy transfer, we will deal directly with the internal energy transfer rate,

\[E'_{rs} = E_{rs} - \vec{u}_s \cdot \vec{M}_{rs} \]

(3)

From the definitions,

\[E'_{rs} = \mu_{rs} \int \int f_{r1} f_s g Q_{rs}^* (g) (\vec{G} - \vec{u}_s) \cdot \vec{g} \, d^3 w \, d^3 w_1 \]

(4)

and for Maxwellian collisions, the group \(g Q_{rs}^* (g) \) is a constant and moves outside the integration. The velocity combination inside can be manipulated next. Define the random velocities \(\vec{c}_s = \vec{w} - \vec{u}_s \), \(\vec{c}_r = \vec{w}_1 - \vec{u}_r \):

\[
(\vec{G} - \vec{u}_s) \cdot \vec{g} = \frac{m_s (\vec{u}_s + \vec{c}_s) + m_r (\vec{u}_r + \vec{c}_r)}{m_r + m_s} \cdot (\vec{u}_r + \vec{c}_r - \vec{u}_s - \vec{c}_s) - \vec{u}_s \cdot (\vec{u}_r + \vec{c}_r - \vec{u}_s - \vec{c}_s)
\]

\[
= \left(\frac{m_s \vec{u}_s + m_r \vec{u}_r}{m_r + m_s} - \vec{u}_s \right) \cdot (\vec{u}_r - \vec{u}_s) + \frac{m_r c^2_r - m_s c^2_s}{m_r + m_s} + \text{(Terms linear in } \vec{c}_r \text{ or } \vec{c}_s) \]

Calling for short \(m_r + m_s = m \), and ignoring the linear terms, because they integrate to zero (notice \(\langle \vec{c}_s \rangle_s = 0, \langle \vec{c}_r \rangle_r = 0 \)),

\[
(\vec{G} - \vec{u}_s) \cdot \vec{g} = \frac{m_r (\vec{u}_r - \vec{u}_s)^2}{m} + \frac{m_r c^2_r - m_s c^2_s}{m} + \text{(Linear terms)}
\]

Substitute into (4):

\[
E'_{rs} = \frac{\mu_{rs}}{m} (g Q_{rs}^*) \left[m_r (\vec{u}_r - \vec{u}_s)^2 \int \int f_{r1} f_s d^3 w_1 d^3 w + \ldots \right.
\]

\[
\ldots + \int \int m_s c^2_r f_{r1} f_s d^3 w_1 d^3 w - \int \int m_s c^2_s f_{r1} f_s d^3 w_1 d^3 w \right]
\]

(5)
The first of the integrals is simply \(n_r n_s \). The second can be reorganized into \(\int d^3 w f_s \int f_r m_e c_s^2 d^3 w_1 \), of which the inner integral yields \(3kT'_r n_r \), while the outer one gives \(n_s \). With a similar argument for the third integral, we obtain

\[
E'_{rs} = \frac{\mu_{rs}}{m} n_r n_s (gQ'_{rs}) [m_r (\bar{u}_r - \bar{u}_s)^2 + 3k(T'_r - T'_s)]
\] (6)

This has an interesting structure. The \(m_r (\bar{u}_r - \bar{u}_s)^2 \) term represents an irreversible internal energy addition (heat) to species \(s \) from collisions with \(r \), provided the two species drift at different mean velocities. The second term, in \((T'_r - T'_s) \) is the transfer of heat from \(r \) to \(s \) when the two species have different temperatures. It is reversible, depending on the sign of \(T'_r - T'_s \).

For completeness, we can now calculate the transfer of full kinetic energy, \(E_{rs} = E'_{rs} + \bar{u}_s \cdot \bar{M}_{rs} \), with the result

\[
E_{rs} = \mu_{rs} n_r n_s (gQ'_{rs}) \left[\frac{m_r \bar{u}_r + m_s \bar{u}_s}{m} \cdot (\bar{u}_r - \bar{u}_s) + \frac{3k}{m} (T'_r - T'_s) \right]
\] (7)

Some simple applications of the Momentum Equations

Electrons Ohm’s Law - Except for high-frequency effects (of the order of the Plasma Frequency) or for very strong gradients (like in double layers), the inertia of electrons can be neglected in their momentum balance. Assume collisions of electrons happen with one species of ions and one of neutrals only:

\[
0 + \nabla P'_e = -e n_e (\bar{E} + \bar{u}_e \times \bar{B}) + n_e m_e [\nu_{ei} (\bar{u}_i - \bar{u}_e) + \nu_{en} (\bar{u}_n - \bar{u}_e)]
\] (8)

where we used \(\nu_{ei} \approx m_e, \mu_{en} \approx m_e \). In many cases, \(u_i \ll u_e, u_n \ll u_e \), and we can simplify the equation by introducing the electron current density,

\[
\bar{j}_e = -e n_e \bar{u}_e
\] (9)

\[
en_e \bar{E} + \nabla P'_e = \bar{j}_e \times \bar{B} + \frac{m_e}{e} (\nu_{ei} + \nu_{en}) \bar{j}_e
\]

Divide by \(\frac{m_e}{e} (\nu_{ei} + \nu_{en}) \) and define,

\[
\sigma = \frac{e^2 n_e}{m_e (\nu_{ei} + \nu_{en})} \quad \text{(Electrical conductivity)}
\] (10)

\[
\beta_e = \frac{eB}{m_e (\nu_{ei} + \nu_{en})} \quad \text{(Hall parameter)}
\] (11)
so that
\[\sigma \left(\vec{E} + \frac{\nabla P_e'}{en_e} \right) = \vec{j}_e + \vec{j}_e \times \vec{\beta}_e \] \hspace{1cm} (12)

Notice:

(a) Electron pressure gradients can drive electron current. This is sometimes called a “diamagnetic current”.

(b) As a limit, if boundary conditions forbid currents, \(j_e = 0 \), then \(\vec{E} + \frac{\nabla P_e'}{en_e} = 0 \), \(\vec{E} = -\frac{\nabla P_e'}{en_e} \), which means density gradients can set up a field – the Ambipolar field. If \(T_e' \cong \text{const.} \)

\[-\nabla \phi = -\frac{kT_e'}{e} n_e \rightarrow \phi = \phi_0 + \frac{kT_e}{e} \ln \frac{n_e}{n_{eo}} \] \hspace{1cm} (13)

Which strongly resembles the kinetic Boltzmann relationship (except this time we only look at averages).

(c) The Hall parameter is the ratio \(\beta = \frac{\omega_{ce}}{\nu_e} \) of electron gyro frequency to electron collision frequency. It can be large in low-density plasmas, even with moderate \(B \) fields.

(d) The current is not aligned with the driving fields. Additional deviations from the electric field result from \(\vec{E}^* = \vec{E} + \frac{\nabla P_e'}{en_e} \)

(e) Eq. (12) can be solved for \(\vec{j}_e \) in terms of \(\vec{E}^* = \vec{E} + \frac{\nabla P_e'}{en_e} \). Start by multiplying (cross products) times \(\vec{\beta}_e \):

\[\sigma \vec{\beta}_e \times \vec{E}^* = \vec{\beta}_e \times \vec{j}_e + \vec{\beta}_e \times (\vec{j}_e \times \vec{\beta}_e) \]

\[\beta^2 \vec{j}_e - \vec{\beta}_e (\vec{\beta}_e \cdot \vec{j}_e) \]

consider only the current perpendicular to \(\vec{B} \), so that \(\vec{B}_e \cdot \vec{j}_e = 0 \):

\[\vec{j}_e \times \vec{\beta}_e = \beta^2 \vec{j}_{e\perp} - \sigma \vec{\beta}_e \times \vec{E}^* \]

and substitute this into (12): \(\sigma \vec{E}^* = \vec{j}_{e\perp} + \beta^2 \vec{j}_{e\perp} - \sigma \vec{\beta}_e \times \vec{E}^* \), or

\[\vec{j}_{e\perp} = \frac{\sigma}{1 + \beta^2} \left(\vec{E}_{e\perp} + \vec{\beta}_e \times \vec{E}^*_{e\perp} \right) \]

plus \(\vec{j}_{e\parallel} = \sigma \vec{E}_{e\parallel}^* \) \hspace{1cm} (14)
This is sometimes organized as a tensor equation. With z taken along \vec{B}:

$$
\begin{align*}
\begin{pmatrix}
\vec{j}_x \\
\vec{j}_y \\
\vec{j}_z
\end{pmatrix} = \sigma
\begin{pmatrix}
\frac{1}{1 + \beta_e^2} & \frac{\beta_e}{1 + \beta_e^2} & 0 \\
-\frac{\beta_e}{1 + \beta_e^2} & \frac{1}{1 + \beta_e^2} & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
E_x^* \\
E_y^* \\
E_z^*
\end{pmatrix}
\end{align*}
$$

(15)

which makes the anisotropy of the situation more clear. In Ionospheric Physics, this is also put as a conductivity tensor

$$
\vec{\sigma} = \vec{\sigma}^* E^*.
$$

(16)

σ_P = “Pedersen conductivity” (very small in the ionosphere, $\beta_e \gg 1$)

σ_H = “Hall conductivity” (intermediate)

σ_\parallel = σ_\parallel “Parallel conductivity” (very large in the ionosphere)

Ambipolar Diffusion

Consider a simple case with $B = 0$, negligible inertia. Write both, electron and ion momentum equations:

$$
m_i n_e \frac{D\vec{u}_i}{Dt} + \nabla P'_i = e\vec{E} n_e + n_e [m_e \nu_{ie}(\vec{u}_e - \vec{u}_i) + \mu_{in} \nu_{in}(\vec{u}_n - \vec{u}_i)]
$$

$$
\nabla P'_e = -e\vec{E} n_e + m_e n_e [\nu_{ei}(\vec{u}_i - \vec{u}_e) + \nu_{en}(\vec{u}_n - \vec{u}_e)]
$$

Add together, note $n_e \nu_{ei} = n_i \nu_{ie}$ (and also $n_e = n_i$),

$$
m_i n_e \frac{D\vec{u}_i}{Dt} + \nabla (P'_i + P'_e) = n_e \mu_{in} \nu_{in}(\vec{u}_n - \vec{u}_i) + m_e n_e \nu_{en}(\vec{u}_n - \vec{u}_e)
$$

usually smaller $\sim \frac{m_e}{m_i}$ or $\sqrt{\frac{m_e}{m_i}}$

Also, normally $\nabla T'_e/T'_i \ll \nabla n_e/n_e$. In addition let us assume that ion inertia can be also neglected in comparison with the other terms in the momentum balance (although keeping the term would be more general),

$$
k(T'_e + T'_i) \nabla n_e = -n_e \mu_{in} \nu_{in}(\vec{u}_i - \vec{u}_n)
$$

or,

$$
n_e (\vec{u}_i - \vec{u}_n) = -k(T'_e + T'_i) \mu_{in} \nu_{in} \nabla n_e
$$
Sometimes neutrals return from recombination of ions, so,

\[n_e \vec{u}_i = -n_n \vec{u}_n \quad \text{then} \quad n_e(\vec{u}_i - \vec{u}_n) = \left(\vec{u}_i + \frac{n_e}{n_n} \vec{u}_i \right) n_e = (n_n + n_i) \frac{n_e}{n_n} \vec{u}_i \]

\[n_e \vec{u}_i = -\frac{n_n}{n_n + n_i} \frac{k(T_e' + T_i')}{\mu_i \nu_{in}} \nabla n_e \quad \nu_{in} = n_0g_{in}Q_{in} \quad n_i + n_n = \frac{\rho}{m_i} \; ; \; \mu_{in} = \frac{m_i}{2} \]

\[n_e \vec{u}_i = \left(-\frac{\kappa_n k(T_e' + T_i')}{m_i^2 \rho \mu_i \nu_{in} g_{in}} \right) \nabla n_e \]

\[n_e \vec{u}_i = -D_a \nabla n_e \]

\[D_a = \frac{2k(T_e' + T_i')}{\rho Q_{in} g_{in}} \quad \text{Ambipolar diffusivity} \]

Back to the electron equation, if we neglect both collision forces,

\[\nabla P_e' \simeq -e \vec{E} n_e \quad kT_e' \frac{\nabla n_e}{n_e} \simeq e \nabla \phi \]

\[\nabla (e\phi - kT_e' \ln n_e) = 0 \]

\[\phi - \phi_0 = \frac{kT_e'}{e} \ln \frac{n_e}{n_{e0}} \quad \text{Equivalent Boltzmann equilibrium} \]