Outline

• More on Components
 – Resistors, Capacitors, Inductors: ideal vs. real
 – First and second order systems
 – Diodes

• Amplifiers
• Four component laws
 - \(v = iR \)
 - \(i = C \frac{dv}{dt} \)
 - \(v = L \frac{di}{dt} \)
 - \(P = iv = i^2R = \frac{V^2}{R} \)

• Two network laws
 - **KCL - Kirchoff’s Current Law**
 \[
 \sum i_n = 0
 \]
 (In/out of node)
 \[
 i_1 + i_2 + i_3 + i_4 = 0
 \]
 - **KVL - Kirchoff’s Voltage Law**
 \[
 \sum v_n = 0
 \]
 (Around a loop)
 \[
 V_1 + V_2 = V_3 + V_4
 \]
Ideal vs. Real

- **Ideal**
 - Wire
 - $R=0$, $C=0$, $L=0$
 - Resistor
 - $C=0$, $L=0$
 - Capacitor
 - $R=0$, $L=0$
 - Inductor
 - $R=0$, $C=0$

- **Real**
 - $R \neq 0$, $C \neq 0$, $L \approx 0$
 - $C \approx 0$, $L \approx 0$
 - $R \neq 0$, $L \approx 0$
 - $R \neq 0$, $C \approx 0$
Review of Resistors

- **Serial**

\[
\frac{1}{R_1} \frac{1}{R_2} \frac{1}{R_3} = \frac{1}{R_4}
\]

\[R_1 + R_2 + R_3 = R_4\]

- **Parallel**

- **Voltage divider**

\[V_R = V_{\text{Bat}} \frac{R_2}{R_1 + R_2}\]

- **For two resistors**

\[R_4 = \frac{R_1 R_2}{R_1 + R_2}\]
First Order Systems

- Relation of different inputs

\[
V_{\text{out}} = \frac{q_0}{C} e^{-\frac{t}{RC}}
\]

\[
V_{\text{out}} = I_0 R \left(1 - e^{-\frac{t}{RC}} \right)
\]

Or

\[
V_{\text{out}} = \frac{I_0 R}{T} \left(t + RC \left(e^{-\frac{t}{RC}} - 1 \right) \right)
\]

\[
V_{\text{out}} = I_0 R \left(1 - e^{-\frac{t}{RC}} \right) e^{\frac{(t-\tau)}{RC}}
\]

\[
V_{\text{out}} = \frac{I_0 R}{\sqrt{1 + (\omega RC)^2}} \sin(\omega t - \tan^{-1}(\omega RC))
\]
Second Order Systems

- Circuits that combine capacitors and inductors are higher order

\[
V_{out} = V_0 \left(1 - \cos(\omega_0 t)\right)
\]

\[
\omega_0 = \frac{t}{\sqrt{LC}}
\]

\[
V_{out} \approx V_0 \left(1 - \cos(\omega_0 t) \cdot e^{-\xi t}\right)
\]

\[
\omega_0 = \frac{t}{\sqrt{LC}}, \xi = \frac{R}{2L}
\]

Resistor adds dampening
Diodes

- **Ideal**
 - Does not allow current flow when voltage is reversed
 - Stops all current
 - Allows infinite current flow when positive voltage is applied

- **Real**
 - Voltage drop: minimum voltage before current can go through
 - Current leak: small amount of current goes through in reverse
 - Maximum/Minimum voltage in both forward and reverse
 - Maximum current in forward
Introduction to Operational Amplifiers

- Utilize an “external” power source to amplify/modify an input signal
 - Allow the use of feedback to closely track the signal

\[i^+ = 0 \]
\[i^- = 0 \]
\[v^+ \]
\[v^- \]
\[v_{\text{pwr}}^+ \]
\[v_{\text{pwr}}^- \]
\[v_{\text{out}} \]

- Adjusts the output voltage \(V_{\text{out}} \) to try make \(v^+ \) and \(v^- \) be the same
 - The user adds elements (wires, resistors, capacitors, etc) which create current loops between the output and inputs to create feedback loops