Week 2 Class Notes
Plan for Today

• Accident Models

• Introduction to Systems Thinking

• STAMP: A new loss causality model
Accident Causality Models

- Underlie all our efforts to engineer for safety
- Explain why accidents occur
- Determine the way we prevent and investigate accidents
- May not be aware you are using one, but you are
- Imposes patterns on accidents

“All models are wrong, some models are useful”

George Box
Traditional Ways to Cope with Complexity

1. Analytic Reduction
2. Statistics
Analytic Reduction

• Divide system into distinct parts for analysis
 Physical aspects → Separate physical components or functions
 Behavior → Events over time

• Examine parts separately and later combine analysis results

• Assumes such separation does not distort phenomenon
 – Each component or subsystem operates independently
 – Analysis results not distorted when consider components separately
 – Components act the same when examined singly as when playing their part in the whole
 – Events not subject to feedback loops and non-linear interactions
Standard Approach to Safety

• Reductionist
 – Divide system into components
 – Assume accidents are caused by component failure
 – Identify chains of directly related physical or logical component failures that can lead to a loss
 – Assume randomness in the failure events so can derive probabilities for a loss

• Forms the basis for most safety engineering and reliability engineering analysis and design
 Redundancy and barriers (to prevent failure propagation),
 high component integrity and overdesign, fail-safe design,
Domino “Chain of events” Model

DC-10:

Cargo door fails → Floor collapses → Hydraulics fail → Airplane crashes

Event-based
The Domino Model in action

Image removed due to copyright restrictions.
Chain-of-events example

- **Moisture**: Use desiccant to keep moisture out of tank.
- **Corrosion**: Use stainless steel or coat of plate carbon steel to prevent contact with moisture.
- **Weakened metal**: Overdesign metal thickness so corrosion will not reduce strength to failure point during foreseeable lifetime.
- **Operating pressure**: Reduce pressure as tank ages.
- **Tank rupture**: Use burst diaphragm to rupture before tank does, preventing more extensive damage and fragmentation.
- **Fragments projected**: Provide mesh screen to contain possible fragments.
- **Equipment damaged**: Locate tank away from equipment susceptible to damage.
- **Personnel injured**: Keep personnel from vicinity of tank while it is pressurized.

Event Chain

- E1: Worker washes pipes without inserting a slip blind.
- E2: Water leaks into MIC tank
- E3: Gauges do not work
- E4: Operator does not open valve to relief tank
- E3: Explosion occurs
- E4: Relief valve opens
- E5: Flare tower, vent scrubber, water curtain do not work
- E5: MIC vented into air
- E6: Wind carries MIC into populated area around plant.

What was the “root cause”?
Variants of Domino Model

• Bird and Loftus (1976)
 – Lack of control by management, permitting
 – Basic causes (personal and job factors) that lead to
 – Immediate causes (substandard practices/conditions/errors), which are
 the proximate cause of
 – An accident or incident, which results in
 – A loss.

• Adams (1976)
 – Management structure (objectives, organization, and operations)
 – Operational errors (management or supervisor behavior)
 – Tactical errors (caused by employee behavior and work conditions)
 – Accident or incident
 – Injury or damage to persons or property.
Reason Swiss Cheese

The Reason Model and Accident Causal Chain

Organizational Influences

Unsafe Supervision

Preconditions for Unsafe Acts

Unsafe Acts

Latent Failures

Latent Failures

Latent Failures

Active Failures

Failed or Absent Defenses

Mishap

Source: Adapted from Reason, 1990

© Cambridge University Press. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.
Poor communication

Key policies/procedures (universal protocol, x-ray labeling) inadequate

Teamwork failures

Orthopedic surgeon fails to examine ankle

Patient anesthetized for unnecessary surgery
Swiss Cheese Model Limitations

- Ignores common cause failures of defenses (systemic accident factors)
- Does not include migration to states of high risk
- Assumes accidents are random events coming together accidentally
- Assumes some (linear) causality or precedence in the cheese slices (and holes)
- Just a chain of events, no explanation of “why” events occurred
Accident with No Component Failures

- Mars Polar Lander
 - Have to slow down spacecraft to land safely
 - Use Martian gravity, parachute, descent engines (controlled by software)
 - Software knows landed because of sensitive sensors on landing legs. Cut off engines when determine have landed.
 - But “noise” (false signals) by sensors generated when parachute opens
 - Software not supposed to be operating at that time but software engineers decided to start early to even out load on processor
 - Software thought spacecraft had landed and shut down descent engines
Types of Accidents

- **Component Failure Accidents**
 - Single or multiple component failures
 - Usually assume random failure

- **Component Interaction Accidents**
 - Arise in interactions among components
 - Related to interactive and dynamic complexity
 - Behavior can no longer be
 - Planned
 - Understood
 - Anticipated
 - Guarded against
 - Exacerbated by introduction of computers and software
Accident with No Component Failure

• Navy aircraft were ferrying missiles from one location to another.

• One pilot executed a planned test by aiming at aircraft in front and firing a dummy missile.

• Nobody involved knew that the software was designed to substitute a different missile if the one that was commanded to be fired was not in a good position.

• In this case, there was an antenna between the dummy missile and the target so the software decided to fire a live missile located in a different (better) position instead.
Analytic Reduction does not Handle

- Component interaction accidents
- Systemic factors (affecting all components and barriers)
- Software and software requirements errors
- Human behavior (in a non-superficial way)
- System design errors
- Indirect or non-linear interactions and complexity
- Migration of systems toward greater risk over time (e.g., in search for greater efficiency and productivity)
Summary

• New levels of complexity, software, human factors do not fit into a reductionist, reliability-oriented world.

• Trying to shoehorn new technology and new levels of complexity into old methods will not work.

Images removed due to copyright restrictions.
• “But the world is too complex to look at the whole, we need analytic reduction”

• Right?
Systems Theory

• Developed for systems that are
 – Too complex for complete analysis
 • Separation into (interacting) subsystems distorts the results
 • The most important properties are emergent
 – Too organized for statistics
 • Too much underlying structure that distorts the statistics
 • New technology and designs have no historical information

• Developed for biology and engineering

• First used on ICBM systems of 1950s/1960s
• Focuses on systems taken as a whole, not on parts taken separately

• Emergent properties
 – Some properties can only be treated adequately in their entirety, taking into account all social and technical aspects
 “The whole is greater than the sum of the parts”
 – These properties arise from relationships among the parts of the system
 How they interact and fit together
Emergent properties (arise from complex interactions)

Process components interact in direct and indirect ways

Safety is an emergent property
Controller

Controlling emergent properties (e.g., enforcing safety constraints)
- Individual component behavior
- Component interactions

Process components interact in direct and indirect ways

Process

Control Actions

Feedback
Controller

Controlling emergent properties (e.g., enforcing safety constraints)
- Individual component behavior
- Component interactions

Air Traffic Control:
Safety
Throughput
Controls/Controllers Enforce Safety Constraints

- Power must never be on when access door open
- Two aircraft must not violate minimum separation
- Aircraft must maintain sufficient lift to remain airborne
- Public health system must prevent exposure of public to contaminated water and food products
- Pressure in a deep water well must be controlled
- Truck drivers must not drive when sleep deprived
Example Safety Control Structure

Example: ACC – BCM Control Loop
Control Structure Diagram – Level 0

ISS

FRGF Sep ENA/INH
Free Drift
Abort/Retreat/Hold
FRGF Separation

Acknowledgments
HTV Status

HTV

TDRS
(Backup)

FRGF Sep ENA/INH
Abort/Retreat/Hold
FRGF Separation

Acknowledgments
HTV Status

NASA GS

FRGF Sep ENA/INH
Abort/Retreat/Hold
FRGF Separation

Acknowledgments
HTV Status

JAXA GS

Voice Loop

© Japan Aerospace Exploration Agency. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.
Control Structure Diagram – ISS Level 1

ISS

ISS Crew

HCP

Monitor/PCS

SSRMS

Capture → HTV

FRGF Separation Enable/Inhibit
Free Drift
Abort/Retreat/Hold
FRGF Separation

Acknowledgments

HTV Status

Capture → HTV

HTV

Acknowledgments

HTV Status

Voice Loop

NASA GS, JAXA GS

NASA GS

NASA GS

FRGF Separation Enable/Inhibit
Free Drift
Abort/Retreat/Hold
FRGF Separation

Acknowledgments

HTV Status

© Japan Aerospace Exploration Agency. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.
The Role of Process Models in Control

- Accidents often occur when process model inconsistent with state of controlled process (SA)
- A better model for role of software and humans in accidents than random failure model
- Four types of unsafe control actions:
 - Control commands required for safety are not given
 - Unsafe ones are given
 - Potentially safe commands given too early, too late
 - Control stops too soon or applied too long

(Leveson, 2003); (Leveson, 2011)
STAMP: System-Theoretic Accident Model and Processes

Based on Systems Theory (vs. Reliability Theory)
Applying Systems Theory to Safety

• Accidents involve a complex, dynamic “process”
 – Not simply chains of failure events
 – Arise in interactions among humans, machines and the environment

• Treat safety as a dynamic control problem
 – Safety requires enforcing a set of constraints on system behavior
 – Accidents occur when interactions among system components violate those constraints
 – Safety becomes a control problem rather than just a reliability problem
Safety as a Dynamic Control Problem

• Examples
 – O-ring did not control propellant gas release by sealing gap in field joint of Challenger Space Shuttle
 – Software did not adequately control descent speed of Mars Polar Lander
 – At Texas City, did not control the level of liquids in the ISOM tower;
 – In DWH, did not control the pressure in the well;
 – Financial system did not adequately control the use of financial instruments
Safety as a Dynamic Control Problem (2)

• Events are the result of the inadequate control
 – Result from lack of enforcement of safety constraints in system design and operations

• A change in emphasis:

 “prevent failures”

 ↓

 “enforce safety constraints on system behavior”
Accident Causality Using STAMP
