Context of Robust Design

Don Clausing
An automatic document handler (ADH) was developed at the SS level. When integrated into the total system there were many new problems. The TQM Problem Solving Process was used, and many problems were solved. However, at the Field Readiness Test (FRT) before entering production the reliability was 15X worse than acceptable.
Case study questions

- What should they do next?
- What should be done in the future to avoid the same dysfunctional path?
- What is the fundamental problem?
Bomb alert!

Too much dependence on reactive improvement

Fig. 4

© Don Clausing 1998
Improvement to avoid bombs

TECHNOLOGY

I – PROACTIVE REACTIVE

IMPROVEMENT IMPROVEMENT

R: requirements C: concept TS: total system SS: subsystem PP: piece parts

Fig. 5

© Don Clausing 1998
Proactive improvement

Yea, we think that proactive is good!

Fig. 6

© Don Clausing 1998
What is wrong here?

Fig. 7

© Don Clausing 1998
Rework – how much is enough?

Design Complete

Build/Test/Fix
Build/Test/Fix
Build/Test/Fix

Ready for Production

Build/Test/Fix

Produce

Fig. 8

© Don Clausing 1998
Build/test/fix – why?

- Reactive problem solving
 - Too little – limited scope of solutions
 - Too late

- Design contains many unsolved problems

- Biggest problem is lack of robustness
 - System works well in favorable conditions
 - But is sensitive to noises – unfavorable conditions that inevitably occur
Proactive problem solving

• Must shift from emphasis on build/test/fix
• Must address effects of noises
 – Erratic performance
 – Leads to delusionary problem solving; chases problem from one failure mode to another
Noises

• **Affect performance** – adversely
• **IPDT cannot control** – examples:
 – Ambient temperature
 – Power-company voltage
 – Customer-supplied consumables
• **Noises lead to erratic performance**

IPDT: Integrated product development team
Failure modes

- Noises lead to failure modes (FM)
- One set of noise values leads to FM$_1$
- Opposite set of noise values leads to FM$_2$
- Simple problem solving chases the problem from FM$_1$ to FM$_2$ and back again, but does not avoid both FMs with the same set of design values – endless cycles of build/test/fix (B/T/F)

Fig. 12

© Don Clausing 1998
Performance; favorable conditions

Variation during Lab conditions

Fig. 13

© Don Clausing 1998
Simple problem solving

Variation during Lab conditions

Initial problem

Fig. 14
Simple problem solving

Variation during Lab conditions

Fig. 15

© Don Clausing 1998
Simple problem solving

Variation during Lab conditions

FM₁ No problem FM₂

© Don Clausing 1998
Simple problem solved

Variation during Lab conditions

No problem

Problem solved

Fig. 17

© Don Clausing 1998
Much more difficult problem

Performance variation with factory and field noises

Fig. 18

© Don Clausing 1998
Simple solution

Look, no problem!

Fig. 19

© Don Clausing 1998
Oops!

New problem

Look, no problem!

Fig. 20

© Don Clausing 1998
B/T/F chases problems from FM$_2$ to FM$_1$ – and back again

Fig. 21

© Don Clausing 1998
B/T/F chases problems from FM_2 to FM_1 – and back again
Build/test/fix

B/T/F chases problems from FM$_2$ to FM$_1$ – and back again
Build/test/fix

B/T/F chases problems from FM$_2$ to FM$_1$ – and back again
Build/test/fix

B/T/F chases problems from FM_2 to FM_1 – and back again

Fig. 25

© Don Clausing 1998
Build/test/fix

B/T/F chases problems from FM$_2$ to FM$_1$ – and back again

Fig. 26

© Don Clausing 1998
Build/test/fix

B/T/F chases problems from FM$_2$ to FM$_1$ – and back again

Fig. 27
Build/test/fix

B/T/F chases problems from FM\textsubscript{2} to FM\textsubscript{1} – and back again
Robustness solves problem

Fig. 29

© Don Clausing 1998
Robustness makes money

- Robustness reduces performance variations
- Avoids failure modes
- Achieves customer satisfaction
- Also shortens development time – reduces build/test/fix
Noises cause performance variations

- Noises are input variations that we cannot control
- They cause performance variations
 - Which cause failure modes
 - Lose customer satisfaction
- Example: temperature – affects performance of cars, chips, and many other products
Three kinds of noises in products

• Environment – ambient temperature
• Manufacturing – no two units of production are exactly alike; machine-to-machine variation
• Deterioration – causes further variations in the components of the system
Manufacturing noise in products

- Unit-to-unit variations
- Caused by noises in factory; e.g.,
 - Temperature and humidity variations
 - Cleanliness variations
 - Material variations
 - Machine-tool and cutting-tool variations
- Factory can be made more robust; reduces one type of noise in product
Role of noises

• Traditional approach
 – Make product look good early
 – Keep noises small
 – Reactive problem solving does not explicitly address noises

• Proactive problem solving
 – Introduce realistic noises early
 – Minimize effect of noises – robustness
Introduction of noises during development

- **Product**
 - Noises are often small in lab
 - Therefore must consciously introduce noises

- **Factory**
 - Noises naturally present during production trials
 - Operate in natural manner
 Don’t take special care
Introduce product noises early

- Drive the performance away from ideal
- Do it early. Don't wait for the factory or customers to introduce noises
- IPDT needs to develop the skill of introducing these noises
- Management needs to design this into the PD process and check that it is done to an appropriate degree
Cultural change

- Early introduction of noises goes against engineers’ culture of making product look good
- Two most important elements for success:
 - Early introduction of noises
 - Recognition that performance variation must be reduced – while noise values are large
Problem prevention

Introduce noises early

Technology Stream

Reduce Variations – then no Problems

Fig. 38

© Don Clausing 1998
Integration of new technologies

A - G present new noises to NT – cause “integration problems.” Robustness enables smooth integration; minimizes build/test/fix.
Robust design

- Achieves robustness; i.e., minimizes effects of noises
- Proactive problem solving – robustness before integration
- Optimize values of critical design (control) parameters to minimize effects of noise parameters
The engineered system

Signal → System → Response

Noise

Control factors
Ideal response

- Want Ideal Response to Signal – usually straight-line function
- Actual response is determined by values of control factors and noise factors
- If noise factors are suppressed early, then difficult problems only appear late
- Introduce noises early!
Actual response

Effect of noises

Fig. 43
Robustness

• Keeps the performance (response) of the system acceptably close to the ideal function
• Minimizes effect of noise factors
• Key to proactive improvement
Parameter design

Purpose – to optimize the nominal values of critical system parameters; for example:

– Capacitor is selected to be 100 pF
– Spring is selected to be 55 N/mm

Improves performance so that it is close to ideal – under actual conditions
Signal/noise ratio

• Measure of deviation from ideal performance
• Based on ratio of deviation from straight line divided by slope of straight line
• Many different types – depends on type of performance characteristic
• Larger values of SN ratio represent more robust performance
Critical control parameters

• Strongly affect performance of the system
• IPDT can control (select) the value
• Fault trees help IPDT to identify
• Complex systems have hundreds of critical control parameters

Note: IPDT is Integrated Product Development Team
Important noise strategy

- Not all sources of noise need to be used
- Identify key noise functional parameter; e.g.
 - Interface friction in paper stack
 - EM radiation in communications
- Specific source is not important
- Magnitude enables quick optimization
 - Specs on noise are not important
 - Worse noise in field is not important
Noise strategy

- **NOISE SOURCE**
- **INPUT NOISE N\textsubscript{IN}**
- **SYSTEM**
 - **OUTPUT NOISE N\textsubscript{OUT}**

STRATEGY
- HOLD N\textsubscript{IN} CONSTANT
- MINIMIZE N\textsubscript{OUT}

NOT IMPORTANT
- SPECIFIC SOURCE
- MAGNITUDE OF N\textsubscript{IN}

© Don Clausing 1998
Successful noise strategy

- Enables quick optimization
- Provides best performance inherent in concept
 - Even when future noise sources change
 - Even when future noises are larger
 - Even when spec changes
- Performance is as robust as possible
- Future improvements will require new concept
Important steps in parameter design

• Define ideal performance
• Select best SN definition
• Identify critical parameters
• Develop sets of noises that will cause performance to deviate from ideal
• Use designed experiments to systematically optimize control parameters
Critical parameter drawing for paper feeder

CONTACT:
ANGLE: 0
DISTANCE: 12 MM

WRAP ANGLE 45°

BELT:
TENSION: 15 NEWTON
WIDTH: 50 MM
VELOCITY: 250 MM/SEC

VELOCITY: 300 MM/SEC

STACK FORCE:
0.7 LB

GUIDE:
ANGLE: 45
MOUTH OPENING: 7 MM
FRICTION: 1.0

RETARD:
RADIUS: 25 MM
FRICTION: 1.5

Optimized values of critical parameters guide the detailed design

Fig. 52

© Don Clausing 1998
Culture change

• Emphasize
 – Ideal function
 – Noise strategy
 – Parameter design

• Do it early! Be proactive!
Improvement activities

• Robust design – minimize variation
 – Parameter design – optimization of nominal values of critical design parameters
 – Tolerance design – economical precision around the nominal values

• Mistake minimization

• Three activities requiring very different approaches
Tolerance design

- Select economical precision
- Determines typical machine-to-machine variation around optimized nominal value
- Primary task is selection of production process (or quality of purchased component) – determines variation of production
- Then put tolerance on drawing
Mistake Minimization

- Mistakes are human errors
 - Diode is backwards
 - Cantilevered shaft has excessive deflection
- Mistake minimization approach:
 - Mistake prevention
 - Mistake elimination
Summary of improvement activities

• Robust design
 – Parameter design – optimization of nominal values of critical design parameters
 – Tolerance design – economical precision around the nominal values

• Mistake minimization
Planning for improvement – schedule

- Accept only robust technologies
- Complete optimization early
 - Critical parameter drawing displays requirements for detailed design
 - Detailed design objective is to make low-cost design that achieves optimized nominal values
- Do tolerance design during detailed design
- Also plan mistake minimization
Technology development

Fig. 59

© Don Clausing 1998
Robust design timing

PD – PARAMETER DESIGN, NEW PRODUCT & PROCESS TECHNOLOGIES
SPD – SYSTEM (PRODUCT) PARAMETER DESIGN
TD – TOLERANCE DESIGN
SVT – SYSTEM VERIFICATION TEST
PPD – PROCESS PARAMETER DESIGN
QC – ON LINE QUALITY CONTROL (FACTORY FLOOR)

© Don Clausing 1998
Inspection for robustness

- Have noises been applied?
- Have all failure modes been exercised?
- Has optimization made the failure modes more difficult to excite?
- Has head-on comparison been made with benchmark?
 - Same set of noises applied to both
 - Our system (or subsystem) has better robustness
Mistake minimization

Fig. 62 © Don Clausing 1998
Robust design plus mistake minimization is the effective approach to the improvement of quality/reliability - usually also leads to the lowest total cost.

Q & R are not separate subjects – manage robust design and mistake minimization and Q & R are the result.
Summary

- Early development of robustness is key to proactive improvement
 - Early application of noises
 - Optimize robustness – avoid all failure modes
- Supplement with tolerance design and mistake minimization
Benefits of robust design

- Shorter time to market
- Customer satisfaction – performance closer to ideal
- Reduced manufacturing cost
- Flexible integration of systems – responsiveness to the market
End