Technology Considerations for Advanced Formation Flight Systems

Prof. R. John Hansman

MIT International Center for Air Transportation
How Can Technologies Impact System Concept

• **Need (Technology Pull)**
 - Technologies can fulfill need or requirement
 - Technologies can overcome barriers (limitations, constraints, etc.)

• **Opportunity (Technology Push)**
 - Technologies can Create Opportunities
 - New Capabilities
 - Competitive advantage
 - Cost
 - Performance
 - Maintenance
 - Other
Formation System Concept is Itself a Technology

- **Needs**
 - Efficient Transport
 - Fuel
 - Cost
 - Crew, Maintenance...
 - Operational Access (Noise, Runways)
 - Flexibility
 - Others

- **Opportunity**
 - Different design space if use multiple vehicles
 - Overcome constraints (eg runway width, single departure point)
 - Performance
 - Fuel efficiency, crew
 - Development of key technologies enable formation flight
 - Flexibility
 - Runway Throughput
What are the Key Technologies for Formation Flight

- Start with Fundamental Abstraction of System or Concept (many ways)
 - Functional
 - Operational
 - Concept of Operations
 - Physical
 - Component
 - Constraint
 - Information

- Based on Abstract view, identify
 - Technology needs
 - Key questions
 - Potential opportunities

- Useful to sketch elements to visualize system
 - Multiple views
What are the Key Technologies for Formation Flight
What are the Key Technologies for Formation Flight

- **Overall Concept Questions**
 - Concept of Operations?
 - How does form up occur
 - Station keeping requirements
 - Failure Modes
 - Existing elements or New
 - Vehicles
 - Control Systems
 - CNS
 - Other

- **Concept Scale Opportunities/Costs**
 - Performance gains estimate
 - Fuel
 - Capacity
 - Costs
 - Development
 - Deployment

- **Concept Technologies Reqs**
 - Formation design
 - Station Keeping
 - Com
 - Nav
 - Surveillance
 - Control
What are the Key Technologies for Formation Flight

- Communications
- Navigation
- Surveillance
- Control (Station Keeping)
 - Intent States
 - String Stability
- Vehicle Configuration
 - Aero/Performance
 - Control
- Propulsion
- Degree of Autonomy
- Flight Criticality
 - Hardware
 - Software
- Low Observability
- Others?
Communications

• **Requirements**
 - Communicate necessary information between formation elements and command node (LAN and Air-Ground)
 - Bandwidth
 - Low-Observable?
 - Synchronous vs asynchronous

• **Constraints**
 - Spectrum
 - Antenna Location

• **Technologies**
 - Radio
 - UHF, VHF, MMW
 - Optical
 - Laser
 - Protocols
COMMUNICATION

• **Voice**
 - VHF (line of sight)
 - 118.0-135.0 Mhz
 - .025 spacing in US, 0.083 spacing in Europe
 - UHF
 - 230-400 Mhz (guess)
 - HF (over the horizon)
 - Optical (secure)

• **Datalink**
 - ACARS (VHF) - VDL Mode 2
 - VDL Modes 3 and 4 (split voice and data)
 - HF Datalink (China and Selcal)

• **Geosynchronous (Inmarsatt)**
 - Antenna Requirements

• **LEO and MEO Networks**

• **Software Radios**

• **Antenna Requirements**
Generic Avionic System

- Antenna Sensor
- Black Box
 - Hardware
 - Software
- Interface Unit
 - Display MFD
 - Input Device
- Databus
- Antenna
- Datalink
- Flight Data Recorder
- Power
- Cooling
Navigation
(relates to Surveillance)

- **Requirements**
 - General Navigation (medium precision)
 - Station Keeping (high precision)
 - Integrity
 - Availability

- **Constraints**
 - Existing nav systems
 - Loss of signal

- **Technologies**
 - GPS/Galileo (need Differential)
 - Code vs Carrier Phase Approaches
 - IRS/GPS
 - Sensor Based Approaches for Station Keeping
 - Image (Visible, IR)
 - Range Finders (Laser, Ultrasonic)
The Global Positioning System
Measurements of code-phase arrival times from at least four satellites are used to estimate four quantities: position in three dimensions (X, Y, Z) and GPS time (T).

(Courtesy of Peter Dana. Used with permission.)

From http://www.colorado.edu/geography/gcraft/notes/gps/gps_f.html
Inertial Reference Unit

- Integrate acceleration from known position and velocity
 - Velocity
 - Position

- Need Heading
 - Gyros
 - Mechanical
 - Laser

- Can get Attitude
 - Artificial Horizon (PFD. HUD)

- Drift Errors
 - IRU unusable in vertical direction (need baro alt)
 - Inflight Correction
 - DME
 - GPS
 - Star Sighting for Space Vehicles

- Measurement Give Attitude Also

- 777 Analytical Redundancy
Surveillance

• Requirements
 - Observed states of lead elements sufficient to form-up and maintain station keeping either manually or by automatic control
 - Feed forward states (intent)

• Constraints
 - Sight Angles
 - Installation (weight, cost, power, etc)
 - Cooperative Targets

• Technologies
 - Automatic Dependant Surveillance Broadcast (ADS-B)
 - Image Based Systems (Vis, IR)
 - Radar (X Band, MMW0
 - Range Finders (Laser)
 - Sensor Fusion Systems
Bob Hilb
UPS/Cargo Airline Association

(Image removed due to copyright considerations.)
• **Wavelength** λ
 - S Band (10 cm)
 - X Band (3 cm)
 - Ku Band (1 cm)
 - Millimeter Wave (94 Ghz pass band)

• **Radar Range Equation**

• **Beamwidth** Θ
 - $\Theta = \frac{\lambda}{D}$
 - $D =$ Diameter of Circular Antenna
 - Pencil beam vs Fan Beam

• **Mechanically Steered Antennas**
 - Scan and Tilt
INTENT REPRESENTATION IN ATC

- Intent formalized in “Surveillance State Vector”

Surveillance State Vector, $X(t)$ =

- Traditional dynamic states
 - Position states, $P(t)$
 - Velocity states, $V(t)$
 - Acceleration states, $A(t)$

- Defined intent states
 - Current target states, $C(t)$
 - Planned trajectory states, $T(t)$
 - Destination states, $D(t)$

- Accurately mimics intent communication & execution in ATC
• Allows visualization of different (actual or hypothetical) surveillance environments

☐ Useful for conformance monitoring analyses of impact of surveillance
• Potential access to more states (e.g. dynamic and intent)
• Need to assess benefits for conformance monitoring
Control

- **Requirements**
 - Maintain Station Keeping sufficient to achieve formation benefits
 - Tolerance to Environmental Disturbances
 - String stability

- **Constraints**
 - Certification
 - Failure modes
 - Available states

- **Technologies**
 - Performance seeking control
 - Multi-Agent Control Architectures
 - Distributed Control Approaches
 - Leader-Follower Schemes
 - Fault Tolerant Systems
 - Redundancy Architectures
Automation

- **Requirements**
 - Form up and station keeping may need to be automated

- **Constraints**
 - Reliability, integrity
 - Certification
 - Failure Modes

- **Technologies**
 - Flight Directors
 - Autopilots
 - Intercept systems
• **Requirements**
 - High Integrity Implementation for Formation
 - Formation requirement exceeds specs for current vehicles (eg 777)

• **Constraints**
 - Failure Modes

• **Technologies**
 - DO 178B
 - ??
Aero-Configuration

- **Requirements**
 - Mission based requirements (you will define)
 - Formation based requirements
 - Special Control Requirements

- **Constraints**
 - Stability and Control (CG)
 - Formation and non-Formation operation

- **Technologies**
 - Conventional approaches modified by formation considerations
 - Asymmetric
 - Formation optimal vs single optimal
 - Lead - High WL, Low AR >> high vortex
 - Trail - Low WS, High AR >> Low drag
 - Vortex Tailoring
 - Unique configurations or control systems
• Symmetric vs Asymmetric

• Variable
 □ Formation vs Free Configurations

• Formation Specific Considerations
 □ What is the optimal aspect ratio for overall performance

• Are there special, non-classical control needs?

• What are takeoff and landing considerations

• In-flight physical hookups
Propulsion

- **Requirements**
 - Take-off, balanced field length >> drives thrust
 - Cruise efficiency
 - Response time

- **Constraints**
 - Operational in formation and non formation configuration

- **Technologies**
 - Unmatched multi engines (shut down in cruise, eg Voyager)
 - Broad operating envelope engines (SFC hit)
 - Tow Schemes
Voyager aircraft return from non-stop trip around the world

Voyager
Formation Transport Example:
C-47 (DC-3) towing CG-4 Cargo Gliders

Courtesy of the Atterbury-Bakalar Air Museum. Used with permission.

http://www.atterburybakalarairmuseum.org/CG4A_C47_color_photo.jpg
What are the risk considerations for technology incorporation

- **Readiness**
 - NASA Technology Readiness Levels (TRL)

- **Vulnerability**
 - High (Key Element on Which Concept Based)
 - Medium (Performance or Capability Enhancing, Competitive Factor)
 - Low (alternatives available)

- **Competitive Risk**
 - Goes both ways

- **Certification Risk**

- **Operational Considerations**
 - Issues are discovered in field operations
 - Tracking Programs
 - Unanticipated uses of technology
What are the risk considerations for technology incorporation

- **Readiness**
 - NASA Technology Readiness Levels (TRL)

- **Vulnerability**
 - High (Key Element on Which Concept Based)
 - Medium (Performance or Capability Enhancing, Competitive Factor)
 - Low (alternatives available)

- **Competitive Risk**
 - Goes both ways

- **Certification Risk**

- **Operational Considerations**
 - Issues are discovered in field operations
 - Tracking Programs
 - Unanticipated uses of technology