Air Transportation System Architecting

Formation Flight:
A possible approach to Commercial and Military Cargo Transport

Air Traffic Control and Avionics considerations

Richard Cléaz-Savoyen
Agenda

- Formation Flight in History
- Military procedures
- Operations optimization
- Avionics - GPS

Source: www.archives.gov
Berlin Airlift

June 25th 1948 -> August 1st 1949

- 2,223,000 tons of supplies
- 266,600 flights from West Germany
- 20 crashes among the British aircraft

Source: www.usafe.af.mil
Military procedures

FAA – DOD Air Traffic Publications

Order 7610.4J
Special Military Operations
Section 12. FORMATION FLIGHT

Order 7110.65N
Air Traffic Control
Chapter 9: SPECIAL FLIGHTS

FF DEFINITION:
More than one aircraft which, by prior arrangement between the pilots, operate as a single aircraft with regard to navigation and position reporting. Separation between aircraft within the formation is the responsibility of the flight leader and the pilots of the other aircraft in the flight. This includes transition periods (join up and break away).

- **Standard Formation:**
 - < 1 mile laterally or longitudinally
 - < 100 feet vertically

- **Nonstandard Formation:**
 - under the provisions of a letter of agreement.

Air Traffic Control
Chapter 9: SPECIAL FLIGHTS

- Standard separation criteria are applied between the formation envelope and non-participating aircraft.

- Formation join-up and breakaway are conducted in VFR weather conditions unless prior authorization has been obtained.

Source: www2.faa.gov
Military procedures

General considerations in military FF

✈ The Leader aircraft is responsible for the communications with ATC

✈ Other aircraft fly relative to another one, and do not care of outside the cell

✈ The aircraft use mainly VFR, visual clues for positioning themselves in the vortex and keep the position

✈ The aircraft must be ready to communicate with ATC if FF breaks-away to get clearances to transition from formation to individual routes and altitudes

✈ ADS-B may be turned-off in commercial aircrafts flying in Formation

Source: Rob Holmes
Operations phases

Basically inefficient relative to the fuel savings

Takeoff
- From same airport
- From different airports

En-Route
- Advantages
- Break-away and Join-up

Landing
- In same airport
- In different airports
Operations

Takeoff from 1 airport

Drawbacks

- 2 minutes separation
- Airborne waiting
 -> wastes fuel savings

Potential solutions:

- Use parallel runways
- Wide runway (Bangor, ME = 90m = 300ft)
- Climb at different vertical speed to save fuel

25 Feb 2004
Operations

Takeoff from n airports

Tasks:
- The aim is to avoid waiting at the rendezvous point -> wastes fuel
- Departures timing at the minute
- Rendezvous point optimized

Problems:
- Airports congestion
- Weather

Needs real-time coordination (A/C-A/C; A/C-ATC; ATC-ATC)
Operations

En-Route

Advantages:

- Separation between the formation and the non-participating A/C remains the same
- Increases Airspace Capacity from p to p+n-1

Real Benefits

Drawbacks:

- Break-away and join-up -> to be avoided (Fuel & ATC)
- Airport break-away handling (workload increases)
Operations

Landing

In one airport:

Drawbacks:
- Formation break-away to handle
- Separation to avoid vortex problem
 -> holding -> wastes fuel
- Airports congestion

Solutions:
- Optimum: landing in formation
 (wide runways)
- Use // runways
- Descend at different vertical speed

In different airports: No specific considerations
Avionics - GPS

State of the art: precision = 2m

Requirements to optimize FF

- < 30 cm precision
- Real time, time accuracy
- Integrity and availability

Carrier Phase differential GPS (NASA)

- Based on the Doppler phenomenon
- Measurement of difference of phase $\Delta\Phi$
- Algorithms can compute the integer β

Precision: about 5 cm

Avionics - GPS

- 3-D case: 4 satellites needed
- 3-D vector of relative position
- Coupling with Inertial Measurement Unit

Attitude and relative position known with high precision

Possible redundancy using Galileo?

Source: Greg Larson
Conclusions

Efficient to
- reduce ATC workload
- increase Airspace capacity

But join-up and break-away phases will waste fuel

Avionics: GPS for automated assistance

Acknowledgement: Robert Holmes, Technical Instructor, Naval science, MIT
Air Transportation System Architecting

Formation Flight:
A possible approach to Commercial and Military Cargo Transport

Air Traffic Control and Avionics considerations

Richard Cléaz-Savoyen
Diverse formation shapes

Source: www.archives.gov
Carrier Phase differential GPS (NASA)

Source: Greg Larson & MIT 16.324