S.I. Units

- Seven basic units
 - meter
 - kilogram
 - second
 - ampere
 - Kelvin
 - mole
 - candela

- Derived units
 - radian
 - steradian
 - Newton
 - Pascal
 - Joule
 - Watt
 - lumen
 - lux
Heat transfer modes due to °T difference

- **Conduction**
 - conductivity λ [W/(m K)]
 - U-value [W/(m2K)]
 - resistance R [m2K/W]
 - surface film:
 - $\alpha_{ext} \approx 23$ W/m2K i.e. $R_{se} \approx 0.04$ m2K/W
 - $\alpha_{int} \approx 8$ W/m2K i.e. $R_{si} \approx 0.13$ m2K/W
Heat transfer modes due to °T difference

Conduction and insulation laws

- Heat flow = surface x U x ΔT i.e. = surface x (1/R_{tot}) x ΔT
- R_{tot} = 1/α_{ext} + Σ R_i + 1/α_{int} if resistance in series
- A_{tot} x R_{tot}⁻¹ = Σ (A_{e1} x R_{e1}⁻¹)
 if in parallel

Images by MIT OCW.
Heat transfer

- Heat transfer modes due to °T difference
 - Conduction and insulation laws: resistances in series

\[R_T = R_{si} + R_1 + R_2 + R_3 + R_4 + R_{se} \]

\[q \left(\frac{W}{m^2} \right) = U \left(T_i - T_e \right) \]

Heat transmittance

\[U = \frac{1}{R_T} \]

Heat flow density
Heat transfer modes due to °T difference

- Conduction and insulation laws: resistances in series

\[R_T = R_{si} + R_1 + R_2 + R_3 + R_4 + R_{se} \]

\[R = \frac{d}{\lambda} \]

\[R_n = \frac{d_n}{\lambda_n} \]

\[(T_n - T_{n+1}) = R_n \ q \]

\[(T_i - T_e) = \frac{q}{U} = R_T \ q \]

\[0,13 \ m^2K/W \]

\[0,04 \ m^2K/W \]
Heat transfer

Heat transfer modes due to °T difference

- Conduction and insulation laws: resistances in series and parallel

60 m³ room surrounded by other rooms at equal temperature (20°C)

Façade in contact with exterior (0°C): surface 10 m² including window 3 m²

Wall = brick (37 cm, R = 0.8 m²K/W) + mineral wool (4 cm, λ = 0.04 W/m²K) +
 pine paneling (20 cm, R = 0.2 m²K/W)

$U_{\text{window}} = 2 \text{ W/m}^2\text{K}$
Heat transfer

- Heat transfer modes due to °T difference
 - Conduction
 - Convection
 - Convection coefficient h_c [W/(m²K)]
Heat transfer modes due to °T difference

- Conduction
- Convection
- Radiation
 - temperature \sim \text{wavelength} \text{[radiated power per m}^2 \sim \sigma T^4\text{]}

Image by MIT OCW.
Heat transfer

- Heat transfer modes due to °T difference
 - Conduction
 - Convection
 - Radiation
 - temperature ~ wavelength

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bright aluminum</td>
<td>0.05</td>
<td>0.95</td>
<td>0.05</td>
<td>0.95</td>
</tr>
<tr>
<td>Galvanized steel</td>
<td>0.25</td>
<td>0.75</td>
<td>0.25</td>
<td>0.75</td>
</tr>
<tr>
<td>White paint</td>
<td>0.20</td>
<td>0.80</td>
<td>0.90</td>
<td>0.10</td>
</tr>
<tr>
<td>Fresh whitewash</td>
<td>0.12</td>
<td>0.88</td>
<td>0.90</td>
<td>0.10</td>
</tr>
<tr>
<td>Lt. green paint</td>
<td>0.40</td>
<td>0.60</td>
<td>0.90</td>
<td>0.10</td>
</tr>
<tr>
<td>Dk. green paint</td>
<td>0.70</td>
<td>0.30</td>
<td>0.90</td>
<td>0.10</td>
</tr>
<tr>
<td>Black paint</td>
<td>0.85</td>
<td>0.15</td>
<td>0.90</td>
<td>0.10</td>
</tr>
<tr>
<td>Concrete</td>
<td>0.60</td>
<td>0.40</td>
<td>0.90</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Images by MIT OCW.
Solar radiation

- Heat transfer modes due to °T difference for windows
 - Same law for heat loss (U value), impact \(\propto \Delta T \) (+ air infiltration)
- Additional heat gain component: solar gains
 - SHGC or g-value (-) through transparent materials: \(\tau_{\text{sol dir}} + q \)
 (different from luminous \(\tau_{\text{vis}} \))
Solar radiation

- Additional heat gain component: solar gains
 - SHGC or g-value (-) through transparent materials

<table>
<thead>
<tr>
<th>Material</th>
<th>SHGC or g-value [-]</th>
<th>U value [W/m²K]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glass only</td>
<td>0.72</td>
<td>2.7</td>
</tr>
<tr>
<td>White Aluminum Slats</td>
<td>0.13</td>
<td>2.4</td>
</tr>
<tr>
<td>Wooden Roller</td>
<td>0.13</td>
<td>2.7</td>
</tr>
<tr>
<td>Clear</td>
<td>0.60</td>
<td>1.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.7</td>
</tr>
</tbody>
</table>

Image by MIT OCW.
Solar radiation

- Additional heat gain component: solar gains
 - SHGC or g-value (-) through transparent materials
 - Sol-air temperature concept for opaque materials

\[G \times \alpha = h \times (T_s - T_o) \]
Heat Flow

- **Reading assignment from Textbook:**
 - “Introduction to Architectural Science” by Szokolay: § 1.1.1 - 1.1.2 + § 1.4.1

- **Additional readings relevant to lecture topics:**
 - "How Buildings Work" by Allen: pp. 47 – 51 in Chap 8
 - "Heating Cooling Lighting" by Lechner: Chap 3