Human health risk assessment
(and human health benefit assessment):
Collecting and weighing evidence
Outline of lecture:


2. From London, 1952 to today: evidence and beliefs about PM (and other pollutants) and mortality.

3. With what might ambient air PM (or other pollutants) co-vary? (That is, by what might associations between PM and mortality be confounded?)
Excerpt from Powerful Medicines, by Jerry Avorn, M.D. (Knoph, 2004)

“In a former British colony, most healers believed the conventional wisdom that a distillation of fluids extracted from the urine of horses, if dried to a powder and fed to aging women, could act as a general tonic, preserve youth, and ward off a variety of diseases. The preparation became enormously popular throughout the culture, and was used widely by older women in all strata of society. Many years later modern scientific studies revealed that long-term ingestion of the horse-urine extract was useless for most of its intended purposes, and that it caused tumors, blood clots, heart disease, and perhaps brain damage.”
Excerpt from *Powerful Medicines*, by Jerry Avorn, M.D. (Knoph, 2004)

“The former colony is the United States; the time is now; the drug is the family of hormone replacement products that include Prempro and Premarin (manufactured from pregnant mares' urine, hence its name). For decades, estrogen replacement in postmenopausal women was widely believed to have ‘cardio-protective’ properties; other papers in respected medical journals reported that the drugs could treat depression and incontinence, as well as prevent Alzheimer's disease. The first large, well-conducted, controlled clinical trial of this treatment in women was not published until 1998; it found that estrogen replacement actually increased the rate of heart attacks in the patients studied. Another clinical trial published in 2002 presented further evidence that these products increased the risk of heart disease, stroke, and cancer. Further reports a year later found that rather than preventing Alzheimer's disease, the drugs appeared to double the risk of becoming senile. The studies resulted in a reduction, but not an end, to the long-term use of these products.”

How did this “shared delusion” about long-term use of hormones in postmenopausal women start, why did it persist, and how did it end?
Initial Observations:

Young women (typically) menstruate and tend to be healthy.
Old women do not menstruate, and (typically) tend to be unhealthy.
Menopause is due to decrease in estrogen production *in vivo*.
Perhaps *exogenous* estrogen can keep women young and healthy longer.
Pregnant mares secrete lots of estrogen in their urine: let’s use that as a drug.

Actions:
1942: First estrogen pill, Premarin, introduced.
1963: Robert Wilson (gynecologist) and wife published (*J Am Geriatr Soc.*)
   “The fate of the nontreated postmenopausal woman: a plea for the maintenance
   of adequate estrogen from puberty to the grave.” Popular book, *Feminine
   Forever*, followed in 1966.
1960’s – 1990’s: The pharmaceutical industry/marketers redefined menopause
   as a disease, “ovarian failure.”
1960’s – 1990’s: Physicians began “treating” “ovarian failure” chronically in
   the hope that it could prolong life, just as treating hypertension can. (But FDA
   had never approved HRT for such use).
**Observational epidemiology:**

Until late middle age, women have lower rates of heart disease and cardiac death than men.

Post menopause, women's rates of cardiovascular disease begin to approach those of age-matched men. (Decreased estrogen is to blame?)

*Many* studies: Postmenopausal women on HRT had significantly less heart disease than age-matched women who did not.

*Some* studies (such as those that controlled for level of education) suggest otherwise, but were largely discounted.


“Considerable epidemiological evidence has accumulated regarding the effect of postmenopausal estrogens on coronary heart disease [CHD] risk. . . . Of 16 prospective studies, 15 found decreased relative risks, in most instances, statistically significant. . . . A quantitative overview [meta-analysis] of all studies taken together yielded a relative risk [of CHD] of **0.56** (95% confidence interval **0.50-0.61**).”
Mechanistic evidence / plausibility:
Estrogens shown to lower LDL and increase HDL in blood (so they should reduce risk of cardiovascular disease); also alter other indicators of vascular function in apparently beneficial ways.

Typical physicians’ assessments: (Ettinger, 1990, Kaiser Permanente, SF, CA):

“Since 1980, increasing epidemiologic and experimental evidence has suggested a hitherto unappreciated and immense CHD health benefit from use of postmenopausal estrogen therapy. . . Based on available evidence, hormone replacement therapy, appropriately administered, is both safe and beneficial. . . Although questions remain, we should not let our imperfect knowledge dissuade us from more widespread prescribing of hormone replacement therapy.”

“Estrogen replacement therapy may offer significant benefits to nearly all postmenopausal women . . . Women at high risk for atherosclerosis, or who already have cardiovascular disease, may particularly benefit from estrogen use. The increased risk for endometrial and breast cancer seen with estrogen replacement therapy is low in comparison with its protective effect against cardiovascular disease.”
Results of controlled, randomized, placebo-controlled, clinical studies (Experimental, rather than observational, epidemiology)

- Heart and Estrogens/Progestin Replacement Study (HERS, 1998): Involved > 2,700 postmenopausal women diagnosed with coronary disease.
  
  \[ \text{RR for CHD} = 0.99 \ (0.80-1.22). \] Also, HRT users had more coronary events in 1st yr. of study; more blood clots throughout.

- Women’s Health Initiative (WHI, 2002):
  
  Involved > 16,000 healthy postmenopausal women
  
  \[ \text{RR for CHD} = 1.29 \ (1.02-1.63). \]

Why were the observational data “wrong?”
Current assessment (Grodstein, Clarkson, and Manson, “Understanding the Divergent Data on Postmenopausal Hormone Therapy,” NEJM, 2003):

“... hormone therapy should not be initiated or continued for the purpose of preventing cardiovascular disease. Furthermore, we do not believe that long-term use (five years or more) of combined hormones should be recommended for women of any age for the prevention of chronic disease. The established increases in the risks of breast cancer, venous thromboembolism, and stroke are too high a price to pay.”
Can we apply the lessons of the HRT story to the current questions of air pollution and health?

- Cannot perform controlled, randomized, placebo-controlled, clinical studies on air pollution.
- Rely on observational data, supported by “plausibility.”
- Small signals amidst considerable noise – what do they signify?
Photo removed due to copyright considerations.
London, England, December 1952

Correlations between daily mortality and the air quality were very clear.

Meteorological inversion and fog trapped thousands of pollutants, gaseous and otherwise, from some 1,000,000 domestic stoves inefficiently burning poor quality soft coal, and from other sources.

But notice that air quality there and then is not like air quality in U.S. today.
Were “smoke”/soot and sulfur dioxide *per se* (1) the acutely toxic agents,

or instead,

(2) merely *markers* of the inversion and its associated concentrated pollution?
Sulfur dioxide: PEL = 5 ppm
IDLH = 100 ppm

Elemental carbon:
IDLH = 1,750 mg per m³

PAHs? Very little *acute* toxicity
To a first approximation, ambient air during the inversion in London should be considered to be like indoor air during an accidental fire.

What accounts for the acute toxicity of fire smoke?
Gaseous and vaporous products of incomplete combustion

carbon monoxide (CO), hydrogen cyanide (HCN),
nitrogen dioxide (NO₂), ammonia (NH₃), hydrogen chloride (HCl), hydrogen fluoride (HF) and other gaseous fluorine compounds, sulfur dioxide (SO₂), formaldehyde, acrolein, **countless** other inorganic and organic gases and vapors, acting additively or interactively.

No one knows what killed people during this air pollution disaster.

People assume it’s the particles that mattered then, and still matter today, based *not* on toxicology, but on a statistical analysis few understood . . .
“The relation between air pollution and mortality in London was examined for the winters of 1958-1972. The data exhibited a high degree of autocorrelation, requiring analyses using autoregressive models. There was a highly significant relation between mortality and either particulate matter or sulfur dioxide (after controlling for temperature and humidity), both overall and in each individual year. Graphic analysis revealed a nonlinear relation with no threshold, and a steeper exposure-response curve at lower air pollution levels. In models with both pollutants, particulate matter remained a significant predictor with about a 10% reduction in its estimated coefficients, while sulfur dioxide was insignificant, with a large drop in its estimated coefficient. The authors conclude that particulates are strongly associated with mortality rates in London, and the relation is likely causal.”
Daily PM$_{2.5}$
New York, NY

Graph removed for copyright reasons.
Weekly Mortality
New York, NY

Graph removed for copyright reasons.
Daily PM$_{2.5}$ and Weekly Mortality
New York, NY

Graph removed for copyright reasons.
The National Morbidity, Mortality, and Air Pollution Study (NMMAPS: Samet et al., 2000)

- NMMAPS is an extensive recent analysis of daily PM levels and mortality rates.
- The figure shows the “most likely estimate” and 95% confidence interval of the % increase in mortality per 10 \( \mu g/m^3 \) increase in PM\(_{10}\).
- New York City (in red) is one of only two cities with a statistically positive result.
- "There is consistent evidence that the levels of fine particulate matter in the air are associated with the risk of death from all causes and from cardiovascular and respiratory illnesses. These findings strengthen the rationale for controlling the levels of respirable particles in outdoor air."

Figure removed due to copyright reasons.
Please see:
Figure 6 in Dominici, F., et al. "A Report to The Health Effects Institute: Reanalyses of the NMMAPS Database." Johns Hopkins University, October 31, 2002.
Is the weak correlation between daily fluctuations of pollutant concentrations and daily rates of death (1) unique to PM? And (2) causal?


Synthesis of 109 daily time-series studies of air pollution and mortality.

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Average ambient concentration</th>
<th>Increase in all-cause mortality, per conc. change = mean</th>
<th>95% confidence interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO₂</td>
<td>24 ppb</td>
<td>2.8%</td>
<td>2.1%-3.5%</td>
</tr>
<tr>
<td>PM₁₀</td>
<td>31.3 ug/m³</td>
<td>2.0%</td>
<td>1.5%-2.4%</td>
</tr>
<tr>
<td>PM₂.₅</td>
<td>18.3 ug/m³</td>
<td>2.0%</td>
<td>1.2%-2.7%</td>
</tr>
<tr>
<td>CO</td>
<td>1.1 ppm</td>
<td>1.7%</td>
<td>1.2%-2.2%</td>
</tr>
<tr>
<td>O₃</td>
<td>31.2 ppb (daily max)</td>
<td>1.6%</td>
<td>1.1%-2.0%</td>
</tr>
<tr>
<td>SO₂</td>
<td>9.4 ppb</td>
<td>0.9%</td>
<td>0.7%-1.2%</td>
</tr>
</tbody>
</table>

Do these results mean that current levels of *all* criteria pollutants are lethal? Or are all of these time-series studies confounded? And if so, by what?
<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Average ambient concentration</th>
<th>Acutely lethal concentrations</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO₂</td>
<td>24 ppb</td>
<td>200,000 ppb [human] 65,000 ppb [dog]</td>
</tr>
<tr>
<td>PM₁₀</td>
<td>31.3 ug/m³</td>
<td>not established</td>
</tr>
<tr>
<td>PM₂.₅</td>
<td>18.3 ug/m³</td>
<td>not established</td>
</tr>
<tr>
<td>CO</td>
<td>1.1 ppm</td>
<td>4,000 ppm [human; dog]</td>
</tr>
<tr>
<td>SO₂</td>
<td>9.4 ppb</td>
<td>1,000,000 ppb [human; guinea pig]</td>
</tr>
</tbody>
</table>
Major contributors to ambient PM$_{2.5}$ in the Southeastern United States
(Environ Sci Technol. 2002 Jun 1; 36(11):2361-71)

<table>
<thead>
<tr>
<th>Source</th>
<th>Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secondary sulfate</td>
<td>30% ± 6%</td>
</tr>
<tr>
<td>Diesel exhaust</td>
<td>16% ± 7%</td>
</tr>
<tr>
<td>Wood combustion</td>
<td>15% ± 12%</td>
</tr>
<tr>
<td>Secondary ammonium</td>
<td>8% ± 2%</td>
</tr>
<tr>
<td>Secondary nitrate</td>
<td>4% ± 3%</td>
</tr>
<tr>
<td>Meat cooking</td>
<td>3% ± 2%</td>
</tr>
<tr>
<td>Gasoline-powered motor vehicle exhaust</td>
<td>2% ± 2%</td>
</tr>
<tr>
<td>Road dust</td>
<td>2% ± 2%</td>
</tr>
</tbody>
</table>
Inhaled sulfate: toxic at moderate levels?

1. Most bronchodilator medications used to treat asthma (such as albuterol) are supplied as sulfate salts.
2. Each puff from inhaler = 20 μg of sulfate.
3. Since a person breathes 0.0005 m³ of air with each puff, this provides 40,000 μg/m³ sulfate.
4. Ambient levels ≈ 5 -10 μg/m³ sulfate.
DPM: toxic at moderate levels?

- Diesel engine exhaust (DPM and gases/vapors) tested in numerous acute and chronic studies.

- 17 chronic studies, involving rats, mice, hamsters, guinea pigs, cats, and monkeys.

- LOEL for premature death due to lifetime exposure to DPM is 6,330 ug DPM/m³ in F344 rats (Nikula et al., 1995); 4,240 ug/m³ in NMRI mice (Heinrich et al., 1986).

- Ambient concentrations of DPM ~ 1 - 10 ug/m³.
What about other kinds of PM?

Residual oil fly ash (ROFA): can cause disease and death in lab rodents, but only at concentrations vastly in excess of ambient.

Concentrated ambient particles (CAPs):

    Cause little to no toxicity in lab rodents (slight effects, reversible within 18-24 hours, poor dose-response).

    Provide little support for “susceptibility factors,” such as age or pre-existing disease.

    No lethality.
If, as the toxicologic and clinical data suggest, weak correlations between current air quality and current death rates are *not* causal but merely *coincidental*, what explains the coincidence?

Three factors, at least.
The \textit{first} factor: the weather.

Meteorology has complicated, direct and indirect, short-term influences on disease and death, and it is simply not possible to “control” completely for all of the effects of weather in statistical regression analyses. Sudden cardiac death, m.i., heart failure-related morbidity and mortality, stroke, and intracranial hemorrhage \textit{all} vary by season.
The second factor: fluctuations in ambient air quality are caused in part by fluctuations in human activity.

The universal risk factor for death is life; and life involves many activities which *simultaneously* put people at risk of death *and cause increases in pollution*.

Thus, there *have* to be correlations between these two things, *regardless* of whether these correlations are causal.

Example: Monday mornings and risk of m.i.
Case-crossover analysis performed as part of the Stockholm Heart Epidemiology Program (SHEEP) Möller et al., (1999)

- **Hypothesis:** Triggering of myocardial infarction = f [anger]
- **Subjects:** 699 cases of m.i. in Stockholm County, 1993-4
- **Data on “hostile behavior” and symptoms in days/hours prior to m.i.:** gathered through detailed, structured interviews (interviewers blind to hypotheses)
- **Results:** Strongly positive. During 1 hour after an episode of anger, relative risk of m.i. = 15.7 (95% c.i. = 7.6 - 32.4)

If daily/hourly fluctuations in traffic/other activities that increase ambient PM also increase anger, the latter could confound associations between the former and m.i.

Does “stress” increase daily death rates, and could stress and traffic correlate? What determines the *timing* of one’s death?

**Objective** To determine whether cardiac mortality is abnormally high on days considered unlucky: Chinese and Japanese people consider the number 4 unlucky, white Americans do not.

**Design** Examination of CHD mortality on and around the fourth of each month in Chinese and Japanese subjects and white controls in U.S.

**Subjects** All Chinese and Japanese (n = 209 908) and white (n = 47 328 762) Americans whose computerised death certificates were recorded between the beginning of January 1973 and the end of December 1998.

**Main outcome measures** Ratio of observed to expected numbers of deaths on the fourth day of the month (expected number was estimated from mortality on other days of the month).
Number of deaths from chronic heart disease, by day of month, in (left) Chinese and Japanese, and (right) whites, in California

Two graphs removed for copyright reasons.

Total and Average Numbers of Deaths in the United States on Each of the First 14 Days of the Month and the Last 14 Days of the Preceding Month, 1973 through 1988.

Graph removed for copyright reasons.

Phillips et al., 1999. NEJM 341:93-98
A third factor: these correlations may be more a reflection of the statistical regression methods used to detect them than of any genuine and robust association.

As explained by Chock et al. (2000):

“Depending on how one deals with the choice of weather variables, co-pollutants, smoothing schemes, seasonal consideration, and so forth, it is possible and in fact not surprising that different best-effort models applied to the data sets of the same urban areas can reach different or even contradictory conclusions.”

As Samet et al. (2003) now note:

“Of course, there is no ‘correct’ model.”
Overall, then, the overall weight of evidence suggests that:
(i) high levels of pollution correlate with mortality because they cause mortality; whereas
(ii) low levels of pollution correlate with mortality not through cause-and-effect, but instead, either largely or entirely, through coincidence.

Moreover, PM, as soot, can be a marker for acutely lethal air pollution (when such pollution is dominated by inefficient combustion), but is not known or expected to be a cause, even at high concentrations, let alone at low.

Current U.S. EPA policy, however, assumes that >10,000 lives per year are lost due to ambient PM: Cost-benefit justification for many Clean Air Act regulations. Health Canada and agencies within the EU predict the same.