Related to the last lecture:
 o Life’s history on Earth – Evidence
 - Phylogenetic tree
 - The same machinery for making proteins – with ribosomes – is used all over Earth.
 - You can map how different the ribosomal RNA is in each species on Earth.
 - In this way we can compare microbes to eukaryotes.
 - A lot of the Eukarya tree (our own tree) is dominated by microbes – Archaea.
 - Chloroplast RNA falls right next to cyanobacteria on that tree
 - This supports the endosymbiont hypothesis – chloroplasts derive from cyanobacteria.
 - Similarly, mitochondrial RNA falls by agrobacteria – α proteobacteria.
 o Life on Earth today: the foundation
 - CO₂/O₂ cycle

To be covered today: Structure, Function, Motility
 o The nature of being small
 o Cell membranes and cell walls
 o Flagella

Shape and Appearance – not where the interesting stuff is regarding microbes
 o They don’t bring in solid food – they bring in dissolved substrates.
 - Surface area to volume:
 \[
 \frac{SA}{V} = \frac{4\pi r^2}{\frac{4}{3}\pi r^3} = \frac{3}{r}
 \]
 o “Prokaryote” vs. Eukaryote
 - In eukaryotes, there are organelles and a nucleus – quite a lot of communication and transport is going on.
 - In prokaryotes, transcription and translation all occur together in the cytoplasm
- However, “Prokaryote” is in quotes because it is only a negative definition – they are defined only by the lack of a membrane-bound nucleus.
- One group of microbes – Archaea – are a lot more like eukaryotes than they are like bacteria.
 - Their informational machinery – RNA polymerase, promoters – are more similar to those of eukaryotes.
- Hence there are Three large branches of life: Bacteria, Archaea, and Eukarya (the two-branch representation of life as prokaryote vs. eukaryote is less accurate).

- Cell membranes: phospholipid bilayer
 - Main permeability barrier
 - Embedded integral membrane proteins – communication, transport
 - Membrane structure
 - Bacteria, eukaryotes
 - Archaea
 - Archaea can still make lipid bilayers – though sometimes they hook them directly together, making a lipid monolayer.
 - This is much more structurally rigid.
 - This is never found in bacteria or eukaryotes.
 - Membranes act as a protein anchor.
 - Also energy conservation – protein motive force.
 - Membrane permeability to various molecules:
 - Simple transport: let a proton down the gradient in order to move things.
 - Group translocation: chemical modification of transported substance driven by phosphoenolpyruvate.
 - ABC system: periplasmic binding proteins are involved and energy comes from ATP.
 - Transport method:
 - Uniporter: one thing comes in.
 - Antiporter: one thing in, one out.
 - Symporter: two in at once.
 - Gram-positive bacteria have one phospholipid bilayer.
 - With a thick peptidoglycan layer outside.
 - Gram-negative bacteria have two bilayers
 - There is periplasm in between.
 - Most of the binding proteins are located here.
 - The outer membrane (lipopolysaccharide and protein)
 - Antibiotic resistance occurs here – resistance thus occurs more easily in gram-negative bacteria.
 - There is a peptidoglycan layer in the middle of the periplasm, but it’s very thin.
 - It forms a net-like structure, with a single molecule of peptidoglycan that acts as a nylon stocking.
• This maintains structure, shape, and integrity.
 ▪ Lipopolysaccharide chains outside – can often make people sick
 o In penicillin, lysozyme chews up peptidoglycan
 ▪ Then water all rushes in, causing lysis
 ▪ Penicillin inhibits the crosslinks
 ▪ Therefore penicillin only works on cells that are growing
 o Archea – S-layers, pseudo peptidoglycan

• Motility
 o Flagella – moves like a propeller in bacteria, not like a whip – they’re rigid
 ▪ Video clip: *E. coli* moving with rotating flagella
 ▪ \(\frac{\text{Inertial Forces}}{\text{Viscous Forces}} \approx \frac{\text{a} \times \text{v}}{\eta} \) ← Fluid Density
 ← Fluid Viscosity
 ▪ The movement is dominated by viscosity
 o Clamshell hypothesis: reciprocal motion doesn’t work at low Reynolds number – instead it’s a rotary motor
 ▪ Proton motive force turns a ring that drives the motor
 o Flagella are hollow on the inside
 ▪ Made of one protein: flagellin
 ▪ It grows from the inside-out
 ▪ Very complex
 o Going counter-clockwise they drive the cell forward
 ▪ Going clockwise, they fly out in a tumble
 o By changing the frequency, you get longer or shorter runs