Chapter 15 – Brock

Demonstration: Prof. Delong shows us a 48 capillary array DNA sequencing device with an optical detector.
 - You can do some 500 runs on the same polymer
 - Then Prof. Delong shows us a 1.5 million well plate – you can do 1.5 million sequencing reactions all at once
 - Each well is around 60 microns across, and you get one bead in each well

Genomics II
 - Comparative genomics basics
 - Gene calling
 - Bioinformatics web resources – there are a huge number of tools
 - Genomics of insect endosymbionts

We each have around 10^{14} microbes associated with us, that we carry around in our bodies
 - We all have our own genes that predispose us to certain diseases
 - It’s not that well understood how the human-associated microbe interacts with human genetics
 - There are some really neat studies going on right now involving how mice genetics determine which microbes live in the mouse’s gut

Genomics is the starting point

What do we do with a sequence, once assembled?
 - The first thing to do is to translate it into the reading frame – look at which codons, and start to discover what the genes are
 - The range of the number of base pairs and genes stretch from around 400 protein encoding genes up to around 10,000.
 - The organisms with the fewest genes are obligate endosymbionts
 - The ones with the most genes are more metabolically versatile
 - Remember that bacterial and archeal genomes are circular.

If you look at a bacterial sequence...
 - Table: Gene functional groups identified in the DNA sequence of E. coli K-12
 - To this day, only around 60% of E. coli genes have been identified and described – and E. coli is the most well understood microorganism in the world
 - This is getting better, but it’s still kind of a sobering thought.
Table: Gene function in bacterial genomes: percentage of genes on chromosome in each functional category
- A larger proportion of the genes in smaller genomes are related to transcription and translation, because those are essential.
- In larger genomes, a greater percentage is devoted to other functions, which are expendable in the smaller genomes.

Graph: Relative percent of ORFs vs. Total ORFs in genome

Figure: Different strains of E. coli can differ by ~1Mbp!
- Non-pathogenic, uropathogenic, and enterohaemorrhagic
- Only around 40% of their genes are found in all three strains
- Around 47% of the genes are found in only one strain.
- E. coli can have many different phenotypes depending on these genes

Diagram: Human genes are shared with...
- Less than one percent of human genes are unique to humans

Kyoto Encyclopedia of genes and genomes (KEGG)
- Metabolic maps that you can pull off the Web
- KEGG map – Prochlorococcus marinus
- Figure 15-7 from Brock: a diagram of the many identified genomic activities going on inside a cell – a model of what the cell is doing with its DNA

How do you make sense of a DNA sequence? How do you find the genes from just the list of A, T, C, and G?
- You can recognize the genetic code from the start and stop sites – this lets you know where there might be gene sites
- You have to figure out what the right reading frame are – there are always three possible frames.
 - You can use a program to find open reading frames
- Gene finding – current methods.
 - Homology method/Extrinsic method – use other genomes that have already been sequenced, and compare
 - Gene prediction method/Intrinsic method – look at the codon content
- Content sensors and gene prediction tools – there are many different programs
- Demonstration: Prof. Delong pastes a DNA sequence (around 70 kilobase pairs) from a marine microorganism into a sample commercial program on the web
 - It gives back a list of possible genes, with around one gene for every thousand base pairs
- These possible genes are then pasted into another program: BLAST.
 - It compares the sequences with known genes
- As it turns out, the sequence in question was already in the database, because the genes all match up perfectly with genes that have already been sequenced
- These genes are probably involved in cell wall synthesis
 - BLAST lets you compare nucleotides to nucleotides and protein sequences to protein sequences
 - The possibilities are out there for comparing almost any sequence that you might have.
 - Bit score
 - The statistics depend on:
 - The size of the database you’re comparing to (this can be corrected for)
 - The length of your sequence (this is what it really depends on)
 - There are a number of different ways that you can compare genomes
 - Operons are different in different organisms – this is useful
 - COGs – Clusters of Orthologous Groups
 - You can categorize genes in different ways

- What else can you do with all these protein-encoding genes?
 - DNA microarrays
 - Proteomics – isolate proteins from cells, cleave proteins with proteases or CNBr, fractionate proteins, detect and identify proteins
 - We used to do this with gels. Now we can put the whole tissue in a mass spectrometer.