Introduction to Cell-Biomaterial Engineering

Module 3, Lecture 1

20.109 Spring 2010
Topics for Lecture 1

• Introduction to tissue engineering
 – motivation
 – basic principles + examples

• Introduction to Module 3
 – background: cells and materials
 – experiment: purpose and structure
Ability to repair tissue is limited

- Severe trauma (acute or disease-challenges tissue repair capacity
- Donor tissue
 - scarcity, immune response (graft or
- Autologous tissue
 - availability, donor site morbidity
- Permanent synthetic substitute
 - inflammation, mis-match, failure
- A new approach: promote regeneration of ~native tissue
“TE... applies the principles of engineering and the life sciences toward the development of biological substitutes that restore, maintain, or improve tissue function.”

What is in a tissue engineer’s toolkit?

How good are the outcomes?

Image by MIT OpenCourseWare. After Langer and Vacanti (1993).
Scaffolds provide a framework

• Why a porous, degradable scaffold?
 – mechanical support
 – allow ingrowth, avoid inflammation
 – promote nutrient+oxygen diffusion

• How is the scaffold made degradable?
 – cross-links susceptible to cleavage
Cytokines promote cell functions

• Types of cytokines
 – growth factors (FGF, TGF, BMP)
 – angiogenic (VEGF)
 – chemokines (attract cells)

• Delivery of cytokines
 – release from scaffold or transplanted cells

• Example: CCL21 promotes T cell migration

Control

See supporting video, "Chemokinesis control."
See supporting video, "Chemokinesis +CCL21."

Courtesy of Darrell Irvine. Used with permission.
Cells make up tissues

- Progenitors vs. differentiated cells
 - scarcity, function
- Transplanted vs. *in situ* cells
 - scarcity, safety

- Example: tumor-infiltrating lymphocytes (TIL)
 - T cells lose function in tumors
 - expand TIL *ex vivo*, treat with cytokines, and transplant
 - tested in mice

Courtesy of Willem Overwijk, et al., and Rockefeller University Press.
Components of a TE construct

scaffold/matrix
- usually degradable, porous

soluble factors
- made by cells or synthetic
- various release profiles

cells
- precursors and/or differentiated
- often autologous

integrated implantable or injectable device
Putting it all together: *in vitro* construct

See supporting video, "Cells in Scaffold."

Interlude: Shmeat

2:24 – 4:32
Commercial success in TE

• Regenerating severely burned skin
 • top: protects wound, retains fluid
 • bottom: provides scaffold for growth
 – forms neotissue comparable to native skin
 – sold as Integra Dermal Regeneration template

www.integra-ls.com/products/?product=46

Courtesy of Integra LifeSciences Corporation. Used with permission.
Joint diseases: an unmet need

- Leading cause of physical disability in U.S.
- $100’s billion in in/direct costs
- Osteoarthritis
 - common in elderly population
 - acute injury (athletes) → susceptibility to early disease
- http://www.youtube.com/watch?v=0dUSmaev5b0&feature=related
- Limited pharma solutions
 - pain management
 - targets unknown
 - cell therapies (Genzyme, Osiris)

Self-reported disease in U.S., 2005

<table>
<thead>
<tr>
<th>Condition</th>
<th>Rate per 100 Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muscle/bone</td>
<td>0.7</td>
</tr>
<tr>
<td>Heart</td>
<td>1.7</td>
</tr>
<tr>
<td>Lung</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Our focus: cartilage tissue

Water-swollen, heterogeneous, avascular tissue.
Alginate: material for 3D culture

- Seaweed-derived polysaccharide
- Co-polymer of M and G acids
- G-block polymer chains cross-linked by cations (e.g., Ca$^{2+}$)
- Forms water-swollen gel

- G/M content and MW influence
 - mechanical properties
 - swelling
 - degradability
 - viscosity of solution
Cells for cartilage TE

<table>
<thead>
<tr>
<th></th>
<th>Stem cells</th>
<th>Chondrocytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obtained from…</td>
<td>Bone marrow</td>
<td>Digested cartilage</td>
</tr>
<tr>
<td>Recovery</td>
<td>Difficult, initially very few cells</td>
<td>Easy, many cells</td>
</tr>
<tr>
<td>Expansion</td>
<td>Many-fold</td>
<td>Minimal</td>
</tr>
<tr>
<td>Upkeep</td>
<td>FGF to expand, TGF-β1 to differentiate</td>
<td>Multiple factors to maintain phenotype</td>
</tr>
</tbody>
</table>

Images of stem cells, chondrocytes, and fibroblasts.
Specific goal and experiments

- **Goal:** examine effect of specific culture conditions on chondrocyte phenotype

- Observe cell morphology and viability
- Measure collagen content
 - Gene (RT-PCR) and protein (ELISA) expression
 - Collagen II:I ratio reflects cell state

- Grander purpose: cartilage TE
 - conditions for *ex vivo* cell expansion
 - conditions for *in vitro* cartilage production
Module overview: lab

Day 1: design

Day 2: seed cultures

Day 3: viability assay

Day 4: prep RNA+cDNA

Day 5: transcript assay

Day 6: protein assay

Day 7: remaining analysis

Day 8: your research ideas!
Lecture 1: conclusions

• Tissue engineering is an emerging interdisciplinary field
• Maintaining cell function is a key part of TE
• Alginate beads provide a culture system for researching soft tissues such as cartilage

Next time… more about engineered and natural biomaterials.