Why Statistical Mechanics?

Understand & predict the physical properties of macroscopic systems from the properties of their constituents

Deterministic approach $ma = F$
- need of $6N$ coordinates at t_0: r_i and v_i
- but typically $N \equiv$ moles (10^{23})!

“Ensemble” rather than microscopic detail
... and its surroundings
 ➢ microcanonical, canonical, grand canonical
What With Statistical Mechanics?

Averages, distributions, deviation estimates...

... of microstates: specification of the complete set of positions and momenta at any given time (points on the constant energy hypersurface for Hamiltonian dynamics)

Ensemble average & ergodic hypothesis:

\[A = \langle a \rangle_{\text{ensemble}} = \frac{1}{N} \sum_{i=1}^{N} a(x_i) = \lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} a(x(t)) dt \]

A system that is ergodic is one which, given an infinite amount of time, will visit all possible microscopic states available to it.
The First Law – Work

Work, heat & energy = basic concepts
Energy of a system = capacity to do work

➢ At the molecular level, difference in the surroundings

<table>
<thead>
<tr>
<th></th>
<th>Energy transfer that makes use of...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat</td>
<td>... chaotic molecular motion</td>
</tr>
<tr>
<td>Work</td>
<td>... organized molecular motion</td>
</tr>
</tbody>
</table>

$$\Delta U = q + w$$

state function – independent of how state was reached
Second Law – Gibbs

- Spontaneous processes increase the overall “disorder” of the universe

- Reasoning through an example
 - microstates to achieve macrostate

 Gibbs postulate: for an isolated system, all microstates compatible with the given constraints of the macrostate (here E, V and N) are equally likely to occur

 - Here 2^N ways to distribute N molecules into 2 bulbs
Second Law - Probability

- Number of (indistinguishable) ways of placing L of the N molecules in the left bulb:

$$W_L = \frac{N!}{L!(N - L)!}$$

- Probability $W_L/2^N$ maximum if $L = N/2$

 ✓ With $N = 10^{23}$, $p(L = R \pm 10^{-10}) = 10^{-434}$ possible but extremely unlikely
Second Law - Entropy

\[S = k \ln W \]
\[S = -\sum_{i=1}^{t} p_i \ln p_i \]

Boltzmann’s constant
\[k = 1.38 \times 10^{-23} \text{ J.K}^{-1} \]

- Principle of Fair Apportionment

\[W = \frac{N!}{n_1! n_2! \ldots n_t!} \]

\[= \left(\frac{N}{e} \right)^N \left(\frac{n_1}{e} \right)^{n_1} \left(\frac{n_2}{e} \right)^{n_2} \ldots \left(\frac{n_t}{e} \right)^{n_t} = \frac{N^N}{n_1^{n_1} n_2^{n_2} \ldots n_t^{n_t}} = \frac{1}{p_1^{n_1} p_2^{n_2} \ldots p_t^{n_t}} \]

Multiplicity of outcomes
Second Law - Entropy

\[
S = k \ln W
\]

\[
\frac{S}{k} = -\sum_{i=1}^{t} p_i \ln p_i
\]

\[
\ln W = -\sum_{i=1}^{t} n_i \ln p_i
\]

\[
\frac{S}{N} = \frac{S}{Nk} = \frac{1}{N} \ln W = -\sum_{i=1}^{t} p_i \ln p_i
\]

Flat distribution ≡ high \(S \)

The absolute entropy is never negative

\[S \geq 0 \]

\(S \) max at equilibrium

Flat distribution ≡ high \(S \)
The Boltzmann Distribution Law

- Maximum entropy principle + constraints

\[
\frac{S}{k} = -\sum_{i=1}^{t} p_i \ln p_i \quad \begin{cases}
\langle U \rangle = \frac{E}{N} = \sum_{i=1}^{t} p_i E_i \\
\sum_{i=1}^{t} p_i = 1
\end{cases}
\]

⇒ exponential distribution

\[
p_i^* = \frac{p_i^*}{Q} = \frac{\exp\left(-\frac{E_i}{kT}\right)}{Q}
\]

Partition function \[Q = \sum_{i=1}^{t} \exp\left(-\frac{E_i}{kT}\right) \]
The Boltzmann Distribution Law (2)

- More particles have low energy: more arrangements that way
 \[P_i^* = \frac{\exp\left(-\frac{E_i}{kT}\right)}{Q} \]

- \(Q \equiv \) connection between microscopic models & macroscopic thermodynamic properties
 \[U = kT^2 \left(\frac{\partial \ln Q}{\partial T} \right) \quad \text{and} \quad S = k \ln Q + kT \left(\frac{\partial \ln Q}{\partial T} \right) \]

- \(Q \equiv \) number of states effectively accessible to system
 \[Q = \sum_{i=1}^{t} \exp\left(-\frac{E_i}{kT}\right) = 1 + e^{-E_2/kT} + e^{-E_3/kT} + \ldots + e^{-E_t/kT} \]

- \(T \to +\infty \Rightarrow \frac{E_i}{kT} \to 0 \Rightarrow Q \to 1 + 1 + 1 + \ldots + 1 = t \)
The Helmholtz Free Energy

- Systems held at constant $T \to$ minimum free energy ($\neq S_{\text{max}}$)
 Equilibrium if $F(T, V, N)$ minimum (T fixed at boundaries)

<table>
<thead>
<tr>
<th>Internal energy</th>
<th>Entropy</th>
</tr>
</thead>
<tbody>
<tr>
<td>$F_{\text{dim}} = U_{\text{dim}} - TS_{\text{dim}} = -\varepsilon - kT \ln(V - 1)$</td>
<td></td>
</tr>
<tr>
<td>$W_{\text{mon}} = W_{\text{iota}} - W_{\text{dim}} = \frac{V!}{(2!)(V - 2)!} - (V - 1) = \left(\frac{V}{2} - 1\right)(V - 1)$</td>
<td></td>
</tr>
<tr>
<td>$F_{\text{mon}} = U_{\text{mon}} - TS_{\text{mon}} = -kT \ln\left[\left(\frac{V}{2} - 1\right)(V - 1)\right]$</td>
<td></td>
</tr>
</tbody>
</table>

$F = U - TS$

Example of ‘dimerization’

\[
F_{\text{dim}} = U_{\text{dim}} - TS_{\text{dim}} = -\varepsilon - kT \ln(V - 1)
\]

\[
W_{\text{mon}} = W_{\text{iota}} - W_{\text{dim}} = \frac{V!}{(2!)(V - 2)!} - (V - 1) = \left(\frac{V}{2} - 1\right)(V - 1)
\]

\[
F_{\text{mon}} = U_{\text{mon}} - TS_{\text{mon}} = -kT \ln\left[\left(\frac{V}{2} - 1\right)(V - 1)\right]
\]

$F(T)$
Fundamental Functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Expression</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>$U(S, V, N)$</td>
<td>$dU = TdS - pdV + \sum_i \mu_i dN_i$</td>
<td>calorimetry</td>
</tr>
<tr>
<td>$S(U, V, N)$</td>
<td>$dS = \left(\frac{1}{T}\right) dU + \left(\frac{p}{T}\right) dV - \sum_i \left(\frac{\mu_i}{T}\right) dN_i$</td>
<td>cal.</td>
</tr>
<tr>
<td>$H(S, p, N)$</td>
<td>$dH = TdS + Vdp + \sum_i \mu_i dN_i$</td>
<td>calorimetry</td>
</tr>
<tr>
<td>$F(T, V, N)$</td>
<td>$dF = -SdT - pdV + \sum_i \mu_i dN_i$</td>
<td>Internal energy vs. entropy</td>
</tr>
<tr>
<td>$G(T, p, N)$</td>
<td>$dG = -SdT + Vdp + \sum_i \mu_i dN_i$</td>
<td>Enthalpy vs. entropy</td>
</tr>
</tbody>
</table>
Macromolecular Mechanics

- Why study the mechanics of biological macromolecules?
 - provide structural integrity and shape
 - coupling of geometry & dynamics ⇒ what is possible
 - importance of conformation for ion channels, pumps...
 - motility
 - mechanotransduction, signaling
The Gaussian Chain Model (Kuhn)

- Long floppy chain made of \(N \) rigid links of length \(b \) (free to swivel about joints, overlapping & crossing allowed)
- Valid for small displacements from equilibrium, not large extensions

\[
G_g = H - TS = -Tk \ln P(R, N)
\]

Entropic reasoning \(\Rightarrow \) mechanical spring
(straightening out \(\equiv \) decrease of entropy)

\[
\begin{align*}
\langle R \rangle &= 0 = \mu \\
\langle R^2 \rangle &= Nb^2 = \sigma^2
\end{align*}
\]

\[
P(R, N) = \left(\frac{3}{2\pi\sigma^2} \right)^{3/2} \exp \left(-\frac{3}{2} \cdot \frac{(|R| - \mu)^2}{\sigma^2} \right)
\]

\[
G_g = \frac{1}{2} \cdot \frac{3kT}{Nb^2} \cdot |R|^2 = \frac{1}{2} \cdot K \cdot (\ell - \ell_0)^2
\]
The Worm-like Chain Model

- Self-avoiding linear chains (Flory, 1953)
- Freely-jointed chain model (Grosberg & Khoklov, 1988)
- Worm-like chain model: Bending stiffness of polymer on short length scales

\[E = -Fx + \int_{0}^{L} \frac{B \kappa^2}{2} \, ds \] \hspace{1cm} \text{(Kratky-Porod)}

\[F = \frac{kT}{16 \ell_p} \left(1 - \frac{x}{L} \right)^{-2} \] \hspace{1cm} \text{(diverges for } x \rightarrow L\text{)}

Persistence length
\[\ell_p = \frac{Yl}{kT} \]

\[s = L \]

- bending
- thermal
Experimental Validation of Models

- **Single-molecule studies of DNA mechanics:**

- **WLC interpolated:**

\[F = \frac{kT}{\ell_p} \left[\frac{x}{L} + \frac{1}{16} \left(1 - \frac{x}{L} \right)^{-2} - \frac{1}{16} \right] \]

After Bustamante *et al.*, *Current Opinion in Structural Biology*, 2001
Effect of Force on Equilibrium

\[
\frac{[1]}{[2]}_{\text{no force}} = \frac{p_1}{p_2} = \frac{\exp\left(-\frac{G_1}{kT}\right)}{\exp\left(-\frac{G_2}{kT}\right)} = \exp\left(-\frac{\Delta G_{\text{no force}}^0}{kT}\right)
\]

- Force tilts energy profile
 ⇒ favors configuration
Sources

- Leland T.W. Basic principles of classical and statistical thermodynamics http://www.uic.edu/labs/trl/1.OnlineMaterials
- Mahadevan L. Macromolecular mechanics, class material.
- Stanford encyclopedia of philosophy: plato.stanford.edu/entries
- Tuckerman’s lecture notes: www.nyu.edu/classes/tuckerman/stat.mech
- www.biochem.vt.edu/courses/modeling/stat_mechanics.html