Cellular adaptations, cell injury, and cell death

Monday Feb 7
Terms

- Etiology
- Pathogenesis
- Morphologic changes
- Functional derangements and clinical manifestations
Hypertrophy

Figure removed for copyright reasons.
Hyperplasia

Photos removed for copyright reasons.
Transmissible murine colonic hyperplasia

Photo and diagram removed for copyright reasons.
Photos removed for copyright reasons.
Source: CD-ROM in [RC].
• Control colon, H&E 200x
• TMCH colon, H&E 200x
• TMCH colon, BrdU 200x
Hepatic regeneration

• In normal adult liver, only 0.5 to 1.0% of cells are undergoing DNA replication
• After partial hepatectomy, the remaining cells proliferate to replace the lost tissue mass
• Hepatocytes begin to divide by 12 hours, and 1 to 2 days later 10% of the cells are synthesizing DNA
• Once liver mass is restored, some 1 to 2 weeks later, the rate of DNA synthesis decreases
Factors driving compensatory hyperplasia

- HGF from nonparenchymal cells acts via c-Met expressed on hepatocytes
- TGF-alpha and EGF are also mitogenic for hepatocytes
- IL-6 and TNF-alpha are produced early in hepatic regeneration, and are necessary for the proliferative response
- A priming event is necessary for hepatocytes to respond to these cytokines and growth factors (degradation of ECM, release of norepinephrine, insulin, glucagon, etc.?)
Resolution of compensatory hyperplasia

- TGF-beta is an important inhibitor, which is also produced by nonparenchymal cells in the liver
- The adult stem cells of the liver do not appear to play an important role in hyperplasia following partial hepatectomy
Pathologic hyperplasia

- Hyperplasia constitutes a fertile soil in which neoplasia may develop.
- Hyperplasia in certain organs is a risk factor for cancer.
- But in tissues with a high turnover rate, hyperplasia may be a beneficial response when mature cells are injured or killed, necessitating compensatory renewal.
Metaplasia

Figure removed for copyright reasons.
Source: Figure 1.6 in [RC].
Reversible & irreversible injury

Normal Cell

NORMAL REVERSIBLE CELL INJURY IRREVERSIBLE CELL INJURY

Injury
- Swelling of endoplasmic reticulum & mitochondria
- Clumping of chromatin

Recovery

Death
- Myelin figures
- Nuclear condensation
- Lysosome rupture
- Membrane blebs
- Swollen mitochondria with amorphous densities

Necrosis
- Swelling of endoplasmic reticulum and loss of ribosomes
- Fragmentation of cell membrane & nucleus

Figure by MIT OCW.
Necrosis and apoptosis

Figure by MIT OCW.
<table>
<thead>
<tr>
<th>Feature</th>
<th>Necrosis</th>
<th>Apoptosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell size</td>
<td>Enlarged (swelling)</td>
<td>Reduced (shrinkage)</td>
</tr>
<tr>
<td>Nucleus</td>
<td>Pyknosis, karyorrhexis, karyolysis</td>
<td>Fragmentation into nucleosome size fragments</td>
</tr>
<tr>
<td>Plasma membrane</td>
<td>disrupted</td>
<td>Intact, altered structure</td>
</tr>
<tr>
<td>Cellular contents</td>
<td>Enzymatic digestion, leakage</td>
<td>Intact, release in apoptotic bodies</td>
</tr>
<tr>
<td>Adjacent inflammation</td>
<td>Frequent</td>
<td>No</td>
</tr>
<tr>
<td>Physiologic or pathologic role</td>
<td>Always pathologic</td>
<td>Often, but not always, physiologic</td>
</tr>
</tbody>
</table>
Cellular and biochemical sites of damage

- Reactive Oxygen Species
 - O_2^-
 - H_2O_2
 - OH^-
- Intracellular Ca^{2+}
- Membrane Damage
- Protein breakdown
- DNA damage
- Plasma membrane
 - Loss of cellular contents
- Lysosome
 - Enzymatic digestion of cellular components
- Mitochondria
 - Cell death
 - Loss of energy-dependent cellular functions
- ATP

Figure by MIT OCW.
Consequences of ATP depletion

Ischemia

Mitochondrion

↓ Oxidative phosphorylation

↓ ATP

↓ Na pump

↑ Influx of Ca^{++}, H_{2}O, and Na^{+}

↑ Efflux of K^{+}

ER swelling

Cellular swelling

Loss of microvilli

Blebs

↑ Anaerobic glycolysis

↓ Glycogen

↓ pH

Clumping of nuclear chromatin

Other effects

Detachment of ribosomes, etc.

↓ Protein synthesis

Lipid deposition

Figure by MIT OCW.
Mitochondrial dysfunction

Mitochondrial injury or dysfunction (Increased cytosolic Ca\(^{2+}\), oxidative stress, lipid peroxidation)

Mitochondrial membrane

Cytochrome c, other pro-apoptotic proteins

Mitochondrial permeability transition (MPT)

Apoptosis

Figure by MIT OCW.
Ca2+ in cell injury

- Extracellular Ca2+
- Injurious agent
- Increased cytosolic Ca2+
- Endoplasmic reticulum
- Mitochondrion
- Ca2+
- Increased cytosolic Ca2+
- Endonuclease
- Protease
- Phospholipase
- ATPase
- Disruption of membrane and cytoskeletal proteins
- Decreased phospholipids
- Decreased ATP
- Membrane damage
- Nucleus chromatin damage

Figure by MIT OCW.
ROS in cell injury

Figure removed for copyright reasons.
Source: Figure 1.14 in [RC].
Necrosis

Figure removed for copyright reasons.
Source: Figure 1.19 in [RC].
Ischemic cell injury

Reversible Injury

- Ischemia
- Mitochondria
- ↓ Oxidative phosphorylation
- ↓ ATP
- ↓ ATP
 - ↓ Glycolysis
 - ↑ Glycolysis
 - ↑ Influx of Ca\(^{2+}\), H\(_2\)O, and Na\(^+\)
 - Efflux of K\(^+\)
- ↓ Na pump
- ↓ pH
- ↓ Glycogen
- Detachment of ribosomes
- ↓ Protein synthesis
- Lipid deposition

Irreversible Injury (Cell death)

- Membrane injury
- Loss of phospholipids
- Cytoskeletal alterations
- Free radicals
- Lipid breakdown
- Others
- ↑ Leakage of enzymes (CK, LDH)
- ↑ Ca\(^{2+}\) influx
- Intracellular release and activation of lysosomal enzymes
- ↓ Basophilia (↓ RNP)
- Nuclear changes
- Protein digestion

Figure by MIT OCW.
Chemical Injury

- CCl_4
 - SER
- CCl_3
 - Microsomal polyenoic fatty acid
- Lipid Radicals
 - $^+\text{O}_2$
 - LIPID PEROXIDATION
 - Autocatalytic spread along microsomal membrane
 - Release of Products of Lipid Peroxidation
 - Damage to Plasma Membrane
 - ↑ Permeability to Na^+, H_2O, Ca^{2+}
 - Cell Swelling
 - Massive Influx of Ca^{2+}
 - Inactivation of Mitochondria, Cell Enzymes, and Denaturation of Proteins

- Membrane Damage to RER
 - Polysome Detachment
 - ↓ Apoprotein Synthesis
 - Fatty Liver

Figure by MIT OCW.
Mechanisms of apoptosis

Figure removed for copyright reasons.
Source: Figure 1.28 in [RC].
Extrinsic pathway of apoptosis

Figure removed for copyright reasons.
Source: Figure 1.29 in [RC].
Intrinsic pathway of apoptosis

Figure removed for copyright reasons.
Source: Figure 1.30 in [RC].
Reticulum cell sarcoma model

B cell lymphoma
Reticulum cell sarcoma (RCS)
MMTV-encoded superantigen

Syngeneic CD4+ Vb16+ T cells
Produce B cell growth factors
“Reverse immune surveillance”

Th1 cytokines
Normal spleen

Figure by MIT OCW.
Photos removed for copyright reasons.
Source: CD-ROM in [RC].
• Normal spleen, H&E 100x
• RcsX spleen, H&E 100x
• Normal spleen, H&E 200x
• RcsX spleen, H&E 200x
• Normal spleen, H&E 400x
• RcsX spleen, H&E 400x
• RcsX spleen, iNOS 400x
• RcsX spleen, activated caspase-3 400x